PHPUnNIt Manual

Sebastian Bergmann

PHPUnit Manual
Sebastian Bergmann

Publication date Edition for PHPUnit 3.7. Updated on 2013-05-15.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Sebastian Bergmann

Thiswork is licensed under the Creative Commons Attribution 3.0 Unported License.

Table of Contents

L. AULOMEEING TESES ..ueiieie ettt ettt ettt ettt e et et e et e e e e b e e e eba s 1
2. PHPUNIT'S GOBIS ...ttt ettt ettt e ettt e e ettt e e ettt e e eena e aeees 3
3. INSEAING PHPUNIT ..ottt 5
P A R et — e e ettt e e aeeeaaaa 5
1000101070 1S > S PP PTPPT 5
PHP ATChiVe (PHAR) ..ottt 6
OPLiONal PACKAGES ... ettt 6
L0 0T | ="o 1 oo PP 8
4. Writing Tests fOr PHPURIToiii e 10
TESt DEPENUENCIESveeeeeiti ettt ettt e et e e e e et e e e e et eeeee 10
Data PrOVIOE'S .. .coveieiieii ettt 12
TESHNG EXCEPLIONS ...ttt et ettt e e e e e enaans 15
TESHNG PHP EITOIS ...ttt ettt e e e 19
TESHNG OULPUL ...eevteeeeit ettt ettt e et e et e e et et e e et ab e e e eeaa s 20
AASSSEITIONS ...ttt e e e e a e aee 22
ASSErt ArrayHASKEY () covrieiiiiii e 22
assertCl assHasSAttri but e() oo 23
assertClassHasStati CALEribute() .o, 24
ASSEI T CONT AT NS() wuieeeeriieeiiii et e et e e e et e e e e e enta e eeens 24
AaSSEert Cont ai NSONI V(1) weuieiiiiiieiiiiii e e e e 26
assert Contai NSONl yI NSt anCesSOr () .oovvviiieiiiiiieiiiee e 27
ASSEI T COUNT () teeerriieiiiti ettt et e e et e et e e et e e e e e eeees 28
ASSEI T EMPU Y () ceiiiiii e 29
assert Equal XMLSEr UCT UT €(1) .uiieiiiiiiieeiiiiie e 30
ASSErtEQUAL S(1) tirrriiiiiiii e 32
ASSEI T Al SE() tiiiiiii i 38
assertFil eBEqUAl S() oo 39
ASSErtFi | @EXi STS() tiirriiiiiiiii e 40
assert Great €r THAN() oo 41
assert Greater ThanO Equal () .oooovviiiiiiiiiii e 42
ASSErtINSTANCEON () ciiireiiiiiiiii e e 43
assertlInt erNal TYPE() i e e 44
assertJsonFil eEqual SISONFil () .oooiiriiiieiiiii 45
assertJsonStringEqual SISONFi | €() weviiiviiiiiiiiii e, 46
assertJsonStringEqual SISONSEriNG() ooveeviiieiiiiiiieeii e 46
ASSErtLesSSTNAN() .o e 48
assertLessThanOr EqQUal () oeeovevieiiioiiiieeee e 48
ASSEI T NUI T () e e e e 49
assertCbj ect HASALtri DUt €() oovveriiiiiie e 50
ASSEI T REGEXP () tevrrnieiiiiiiiee it 51
assertStringMat chesFor mat () ..o.covveviiiiiieiiii e 52
assertStringMatchesFormat Fil e() ..ooooovveiiiiiiiiiii e, 53
BSSEI T SAMB() ieiietiie ittt ettt et e et e et e e et e e e e eae 54
ASSErt Sel @CT COUNT () tervrieiiiiiieiiii et et e e e e 56
AaSSert Sel @CE EQUAl S(1) wruiiiiiriieiiiii ettt 58
asSsert Sel eCt REGEXP() wruiiiiiiiieiiii e 59
assertStriNgENdSW th() oo 61
assertStringEqual SFil () oo 62
assertStringStart SWth() oo 63
oISy Y o A I T | () ISP PP UUPPTNN 64
ASSEI T TRAL () oieiiiiiiieiii e e e 66
BSSEI T TIUB() eeeiiti ettt ettt et et ettt e et e et e e e e et e e e enb e eenes 68
assert Xm Fi [eEqual sXm Fil () covieiiiiiii e 69
assert Xm StringEqual SXmM Fil e() oo, 70
assert Xm StringEqual SXm String() «ooooveeeeinieiiie e 71

PHPUnit Manua

[o o 11 oL | PP 73
[0 o Tc o= = N 75
5. The Command-Line TESt RUNMENiiiiiiiiiiiiii et et e e e e e e e e eees 77
Command-Ling SWITChESiiiiiiiiei e e e e eeees 77
L (LU === PRSPPI 82
More setUp() than tearDOWN()ccvuniiiiiiiii e e 84
RV T 1o PP 85
S =TT 0T D4 L0 Y PPN 85
GlODA SEALE ...eieei e e a e aaan 85
A0 (o= 0TI oo TR == £ 87
Composing a Test Suite Using the FIlesystemcoocviiiiiiiiin e 87
Composing a Test Suite Using XML Configurationcooeeviviiiieiiin e e, 88
SR DT = o= s O =] oo RN 90
Supported Vendors for Database TESHNGcovveiviiiiii e e 90
Difficulties in Database TESHNG .. .cvuiiiiieiii e e 90
The four stages of a database tESto.viiiii i 91
1. Clean-Up Database ... cccuueviiiiiie e e e e e e e 91
2. SEEUP FIXEUNE oo e e e e e 91
3-5. Run Test, Verify outcome and Teardownccoevveviiieiiinciiiiecieeeeeeeenne, 91
Configuration of a PHPUNIt Datahase TESICASEcvuvvvniiiiiieiiieecie e e e 91
Implementing get CoNNECt i ON() ooviiiiiii i e 92
Implementing get Dat @St () ooovveeeiiiiiieie e 92
What about the Database Schema (DDL)?oviviiiiiiieiieeee e 93
Tip: Use your own Abstract Database TeStCaSEvvvvneeiiieiiiieeiiieei e 93
Understanding DataSets and DataTableSoovvviiiiiiiiiiiccie e 94
Available Implementationsoooiuiiiiiii e 95
Beware of FOraign KEYSo.uiiii i e e 102
Implementing your own DataSets/DataTablesooeevviiiiiiiiiiii e 102
The CONNECLION APluui e e et e s 103
Database ASSEtIONS APl ... 104
Asserting the Row-Count of aTableccocoiviiiiiiiii e, 104
Asserting the State of aTablevviiiiiii i 104
Asserting the Result of @ QUENYuuiiiiiiii e e 105
Asserting the State of Multiple TableScoovviiiiiiiiii e, 105
Frequently ASKed QUESLIONSciuuiiiii e e e e e e e e e e e e e eees 106
Will PHPUniIt (re-)create the database schema for each test?covvvvvviiinenn, 106

Am | required to use PDO in my application for the Database Extension to
1101 S PP 106
What can | do, when | get a“Too much Connections” Error?ccoeevvveennnn. 106
How to handle NULL with Flat XML / CSV DatasetS?ccoeevvvviieeviiiineeneiinnnn. 107
9. Incomplete and SKIPPEA TESIS ..vuuiiiiiiii e e e e e e aeas 108
FpTeo] o)L= T I (PN 108
S T oL o T 1= £ 109
SKipping TEStS USING @IEAUITEScvvvneiiieeei et e e e e e e e e e et e e et e e st e e et e eaannas 110
O == 1o o] =~ U SPP 112
SHUBIS et 112
Kol Q@] o 1= ot £ N 117
Stubbing and Mocking WED SEIVICEScvuviiiii e 121
MOcKing the FIIESYSIEM ... i e 123
O = g o o 1 o= 126
(DT g1l D=V /= o] 41 o | P 126
(DI g 1g 0l BI= o100 o1 o S 126
12. Test-Driven DeVEIOPMENTcciui i e e e e e e e e e e et e e aa e eaaas 128
BanKACCOUNt EXAMPIE ... ovuiiiiiici e e e e e e e e 128
13. Behaviour-Driven DeVEIOPMENTiiiiiiiii e e e e e e e 133
BowlingGame EXaMPIEcouiiii e 134
14. Code Coverage ANBIYSISiiii et e e e 139
Specifying Covered MethOdSoovuiiiiii e 141

PHPUnit Manua

To o] T alo I @0 e ST =1 LoTe: = 143
Including and EXClUdiNg FIlESccouiiiicie e 143
0 0 Tc T o= = PPN 144
15, Other USES fOr TESES ..iiiiiiiieiiii ettt e e e et e e et e e e e ean s 145
Agile DOCUMENTALIONiitieii e e e e e e e e e e e e e e e e e et e et e e aa e eanas 145
CrOSS-TEAM TESLS ..ouuiitiie ittt e et e e e e e e e e e e e eennas 145
16. SKEIBLON GENEFBLON ...cieeveeeeeeiie e et e et e e e e e et e e e e et e e e e et e e e e e et e eeeett e eeeateaeaees 147
Generating a Test Case Class SKEIEIONcocviiiiiiiii e 147
Generating a Class Skeleton from aTest Case ClasSoovvvvviiiieiiiieiiii e 149
17. PHPUNIt @and SELENIUMouiiiii e e e e 152
SELENIUM SEIVEL ..ottt e et e e e e e e e et e e eaeanns 152
TgS =1 = o) o P 152
PHPUNIt_Extensions Selenium2TeStCasevevuueeiiiieiiiieeeeee e e e e e e 152
PHPUNIt_Extensions SeleniUmTeStCaseevvueiiiiieeii e e e e e e e e 153
G 1o o1 P 160
TSt RESUIES (XIML) ittt e e e e e 160
TSt RESUIES (TAP) ettt e e e e aa e e eaenns 161
TSt RESUIES (JSON) L.ttt sttt e et e e e e e et e e e et e e eennns 161
Code Covearage (XIML) .oouuiiii e e e e e e e e s e e e 162
Code Covearage (TEXT) .uiiiiiiii et e e e e e et e e e eaen 162
19. EXtending PHPURIL ... e e e e e 164
Subclass PHPUNit Framework TESICASEccuuiiiiieiieeei e eei e e e e e e e aaas 164
Wt CUSLOM @SSEITIONS ...uvuiiiiii ettt e et e e e e e e eaaens 164
Implement PHPUNit_ Framework_TeStLISIENEYovivieiiiieeie e, 165
Subclass PHPUNit EXteNsSions TESIDECOIratOrccuvuiviviieiiieeiiieei e e e eaeeeaenns 166
Implement PHPUNit_ Framework TEStcouviiiiii i e 167
F N = o] 3 LSRRI 169
|2 AN 0] = (o PP 173
(@ U O o 173
@ACKUPA 0DAl S it 173
@ackupStati CALETTBULES i 173
@0deCoVEr AgE] gNOT B™ ooiniiii i 174
(@0 VA=Y ST 174
@OVEr SNOt NI NQ o e 175
(@ Y A= 1 o S0 VA o 1] S 175
(@ 1= o] Lo £ P 175
(@ =ToA =T = e oa=T o) A o o I 176
@xpect edEXCEPti ONCOUE ..covvuiiiii i e 176
@xpect edEXCEPL i ONMESSAGE .ivvuiiii i e e 176
(@ Lo LU o T 177
@UL PUL BUT F BT NG i e e eaas 177
@reserved obal Stat @ ..o 178
(@ =0 LU L =T P 178
@ unTest Sl NSePAr at EPr OCESSES ..ovuiiiiiiiiiii e 178
@ UNI NSEPAT At EPT OCESS .uuiiiiiieiii et e e e e e e aen 179
(@ =3 179
(@ =13 A0 [0 179
(@ o1 =] S 179
C. The XML Configuration Filecc.uiiiiiiiiie e e e e 180
L T T PP 180
IS S 1 =S P UT P 181
L] (010 o 1= PP 181
Including and Excluding Files for Code COVEragecoovvvieiiieiiieiiii e 182
(oo o1 1o [P 182
IS A R =0T TSP 183
Setting PHP INI settings, Constants and Global Variablesccocoeviiiiiiiniiinennnnn. 183
Configuring Browsers for SElenium RCcooiiiiiiiiiii e 184
[2 g o PP 185

PHPUnit Manua

E. BibliOgraphyoiiiii e
[o o)1 o |

Vi

List of Figures

14.1. Code Coverage for set Bal anCe() .oovviieiiiiiioiiiiie e 140
14.2. Panel with information 0N COVENNG TESESceuuuiiiiiii e 140
14.3. Code Coverage for set Bal ance() with additional testccccoeviiiiiiiiiiiiinnnes 141
18.1. Code Coverage output on the command-line with colorscccooviiiiiiiiiiiiiiiinees 163

vii

List of Tables

4.1. Methods fOr tESHING EXCEPLIONSuiieiii ettt 18
4.2. Methods fOr tESHING OULPULceuuneiiiti ettt e et e e 22
4.3, CONSITAINES ...eevteeeeeeti ettt ettt et e et ettt e ettt e et e b e e et et e e et et e e et eb e e e enaa s 67
9.1. AP TOr INCOMPIELE TESES ... eevtiieiiiii ettt et e et e e e e eeens 109
9.2. AP Or SKIPPING TESES ...ceitiieiiii ettt ettt enens 110
9.3. POSSIDIE @FEQUITES USBOES eeeeeti ettt e ettt ettt e e ettt e ettt e ettt e e e et e e e ente e eeenes 110
FO.1. MEICHENS ...ttt 120
16.1. Supported variations of the @assert anNNOLELIONoeveeviiieiiiiieeei e 149
17.1. SElenium SErver AP SEIUD ...ooeveieiiiii et 155
L7.2. ASSEITIONS ..ttt ettt ettt ettt 157
17.3. Template MEtNOUScoouuiiiiii e 158
AL ASSEITIONS ..ttt 169
B.1. Annotations for specifying which methods are covered by atestccooevviiiiiiiiinnnnen. 174

viii

List of Examples

1.1, TeSting @rray OPEIELIONScceuuueeeeutn ettt eeeti e et et e et et eebe et e et e e eeaeaeeeran e eennans 1
1.2. Using print tO teSt array OPEraiONSceeeruneeeetieeeeeiii e e et e e et e ettt e e eeti e eeeniaeeees 1
1.3. Comparing expected and actual values to test array Operationsccoeveuvevenneieinneenneeennn. 1
1.4. Using an assertion function to test array Operationsccouuiveeieiiiieeiiiiineece e 2
4.1. Testing array operations With PHPUNIT ..o e 10
4.2. Using the @epends annotation to express dependenciesvevveviieeeiiinieeeiiinneeenns 11
4.3. Exploiting the dependencies DEtWeen tESES i 11
4.4. Using a data provider that refurns an array Of array'soveveeveniereeiinieieiiieeeiieeeeneen 12
4.5. Using a data provider that returns an Iterator ObJECEcoouviieiiiiiiiiiiii e 13
4.6. The COVFIIEITEraIOr ClASScceutieiiiii ettt e e e e e e e 14
4.7. Using the @expectedEXCEPtion @anNOLALIONccevuuieiiiiiieiiiie e 15
4.8. Using the @expectedExceptionM essage and @expectedExceptionCode annotations............ 16
4.9. Expecting an exception to be raised by the tested codeoooviiiiiiiiiiiiii 17
4.10. Alternative approach to testing EXCEPLIONScvvvueieiiiiie et 19
4.11. Expecting a PHP error using @expectedEXCEPioNcoeuvuiieiiiiiieiiiiieeeei e 19
4.12. Testing return values of code that useS PHP EITOrScc.uuiiiiiiiiieiiiiiiieceiiieeceiieeeee 20
4.13. Testing the output of afunction or Methodcooviiiiiiiii e 21
4.14. Usage of assertAITayHaSKEY()uueieeiieiiii ettt et 22
4.15. Usage of assertClassHasAIDUIE()oovereieiii e 23
4.16. Usage of assertClassHasStati CATHDULE()vuivieeiiieiiii e 24
4.17. Usage Of aSSErtCONAINS() ... cevruuetirnietetiia et ettt ettt e et e et e e e 25
4.18. Usage Of aSSErtCONAINS() ... eevvuueterrieteeii et e e e et e et e et e e e e ere s 25
4.19. Usage of assertContaiNSONIY()eeeereeieiiiee ettt eaeens 26
4.20. Usage of assertContainsONnlyINStanCeSOf()cvvveuieiiiiiieiiiie e 27
4.21. USgE OF @SSEITCOUNT() eevvueeernieeieti ettt sttt et e et e et e e e e e e 28
4.22. Usage Of 8SSEIEMPLY() «.vnueeeeriieeteiiie ettt ettt e e e et e e e 29
4.23. Usage of assertEqUal XMLSITUCIUNE()ocveeeieiiii e 30
4.24. Usage Of 8SSEITEQUAIS() ..vvvuneeeeteeteiiie ettt ettt ettt et 32
4.25. Usage of assertEquals() With flOaESuiiiiiiiei e 34
4.26. Usage of assertEquals() with DOMDocument ODJeCtSvvviiiiiiiiiiiiccei e 35
4.27. Usage of assertEquals() With ObJECESiiiiieiiiiiii e 36
4.28. Usage of assertEquals() With arraysoceeeieieii e 37
4.29. Usage OF @SSEITFAISE() .. eeeeeneiiiii et 39
4.30. Usage of aSSertFilEEQUAIS()cvvuneiirtiieeiiii et 39
4.31. Usage Of SSErtFilEEXISIS() .vvvuueeerrtieiiiiiie ettt et e et 40
4.32. Usage of assertGreater Than()oveeeee et 41
4.33. Usage of assertGreaterThanOrEQUAl() «....ccvvuerierieeieiie et 42
4.34. Usage of assertiNStanCEOT()vu e eeirrieeeiiii et 43
4.35. Usage of assertinterNal TYPE() .eevuueeereieieii ettt ettt 44
4.36. Usage of assertJsonFileEqualSISONFITE()ccoevenieiiiiieiiii e 45
4.37. Usage of assertJsonStringEqQUalSISONFITE()oovvuiiiiiiieiiii e 46
4.38. Usage of assertJsonStringEqualSISONSIIING() - vvvvenererrnnereriiieeeiin e e e 47
4.39. Usage of aSSertLeSSTNAN() ...ccvvuiiiiiiiieeiiii et 48
4.40. Usage of assertLessThanOrEQUEl() «....cvvueeereneiiiiie et 49
4.41. Usage Of @SSEItNUII() ... e e e 49
4.42. Usage of assertObjectHasAITDULE()coovunieiiii e 50
4.43. Usage Of 8SSEItREGEXP() ovvvuueeerriietitiieeteei ettt et e et e e eaaas 51
4.44. Usage of assertStringMatCheSFOrMAL()vuueverriieieiiiieeeei e 52
4.45. Usage of assertStringMatcheSFOrmatFile()veiiiriiiiiiiiice e 53
4.46. USa0E OF @SSEITSAME() ...eevruneiiiii ettt ettt 54
4.47. Usage of assertSame() With ODJECESuiiiiiiieieei e 55
4.48. Usage of assertSEl@CtCOUNT() eeeereneeietiie ettt ettt e e et e e e naa s 56
4.49. Usage of assertSEl@CtEQUAIS() virrrieiiiie ettt 58
4.50. Usage of assertSEl@CtREGEXD() «.-vxuueterrunetertieeteeiiie et et e et et e e e e e e eeaans 60
4.51. Usage of assertStingENASWITh()ooeeereieiiii e 61

PHPUnit Manua

4.52. Usage of assertStringEqUalSFITE()vuviiveieiicie e 62
4.53. Usage of assertStringStartSWith()veveniiii e, 63
454, USage OF ASSEITTAQ() +vuvvrnerrneriieeiiieeiie et e et e e e e e e e e e e e et e e et e e et e e e ta e aaaeanens 65
4.55. Usage Of aSSErtTa()cevuiiiiiiii e e e e e e e 66
4.56. USAge OF ASSEITTIUE() oevuneiiniiiii i e et e e e e e e e e e e et e e et e e e e annas 68
4.57. Usage of assertXmlIFIeEqualsSXMIFITE()eveiii e 69
4.58. Usage of assertXmiStringEqualSXMIFIIE()ooovniiiiiiii e, 70
4.59. Usage of assertXmiStringEqual SXMISEIING() «.vvevvvneiiieiieeie e 72
4.60. Error output generated when an array comparison failsc.ccoeeeiiiiiiiiiiiin i, 73
4.61. Error output when an array comparison of an long array fails...........ccccceeiiiiiiiiinennns 74
4.62. Edge case in the diff generation when using weak comparisonccceeevviieeeineeeinnenn. 75
6.1. Using setUp() to create the stack fiXtUreocovviviiiiiiiii e, 82
6.2. Example showing all template methods availablec.cccoiiiiiiiiiiii e, 83
6.3. Sharing fixture between the tests of atest SUItEoevvviiiiiiiiii e, 85
7.1. Composing a Test Suite Using XML Configuraionccooeeuieeiiiieiiineeiineceineesieeeinas 88
7.2. Composing a Test Suite Using XML Configuraionccooeeuieeiiiieiiineeiineciiieesieeeins 89
9.1. Marking atest as iNCOMPIELEuiiii i e e eaas 108
LSS (] o] 1 0 - T (= P 109
9.3. Skipping test Cases USING @FEQUITESuueerneeeiieeiieeeaeeeeieeeeests e e esanaeeateeennaaeens 111
10.1. The class We WaNt 10 SEUDu.iiiiiii et e et eeeeae e eees 112
10.2. Stubbing a method call to return afixed valuecooovviiiiiiiiiii e, 113
10.3. Using the Mock Builder API can be used to configure the generated test double class 114
10.4. Stubbing a method call to return one of the arguMENtScceveviiieiiii i, 114
10.5. Stubbing a method call to return areference to the stub objectccoceiiiiiiiinnnnn. 115
10.6. Stubbing a method call to return the value fromamapccoeevviiiviiiiiii e, 115
10.7. Stubbing a method call to return avalue from acallbackc.ocooeiiiiiin e, 116
10.8. Stubbing a method call to return alist of valuesin the specified orderccoeeeuniiis 116
10.9. Stubbing a method call to throw an eXCeptioncoeviiiiiiiiieii e, 117
10.10. The Subject and Observer classes that are part of the System under Test (SUT) 118
10.11. Testing that a method gets called once and with a specified argument 119
10.12. Testing that a method gets called with a number of arguments constrained in different

1T = T T 119
10.13. Testing the concrete methods of an abstract class..........ccooevvvviiiiivii i, 120
10.14. Testing that a method gets called once and with the identical object aswas passed 121
10.15. Create a mock object with cloning parametersenabledcoocviieiiiiiiiceeeennn, 121
10.16. StUbBING @ WED SEIVICE ..vuiiiii i e e e e e e e e e eaa e 122
10.17. A class that interacts with the filesystem ..o 123
10.18. Testing a class that interacts with the filesystemcoooiiiiiiiiii e, 123
10.19. Mocking the filesystem in atest for a class that interacts with the filesystem 124
12.1. Tests for the BanKACCOUNE ClESSiiiiiiiieiiiii et eeeai e 128
12.2. Code needed for the testBalancel sinitiallyZero() test to Passccvvvevvieiiiieiiiieeiinenns 129
12.3. The complete BanKACCOUNE ClaSSuuiiiiieiiieii e e e e 130
12.4. The BankAccount class with Design-by-Contract assertionsccocvvvevvieviiieeennennn, 131
13.1. Specification for the BowlingGame Classccccuveiiiiiiiiicii e 134
14.1. Test missing to achieve complete COde COVEIrageuvviriiiiieiii i e e e e 140
14.2. Tests that specify which method they want to coveroocoiiiiiiiiiiiie e, 141
14.3. A test that specifies that no method should be coveredccooovviviiiiiiiiii e, 142
14.4. Using the @ odeCover agel gnor e, @odeCover agel gnoreStart and

@odeCover agel gnor eEnd annotatioNScouueiiieiiiiieiii e e e e e eaaeens 143
TSPt 144
16.1. The CalCUIBION ClSS ...iivviieieiie et e e e e et e e e e s 147
16.2. The Caculator class with @assert anNOtAtiONSvvnieniiiieiieee e 148
16.3. The BowliNgGamMETESt ClaSSucvvuiiiiieii e e e e e e e e et e e e eens 150
16.4. The generated BowlingGame class SKEIEtONccouuiiiiiiiiiiiiiiii e, 150
17.1. Usage example for PHPUnNit_Extensions Selenium2TestCaseccvvvevvnveviineeeinennnnn, 152
17.2. Usage example for PHPUnNIit_Extensions SeleniumTestCasecoocvvvevvneeviineeiineeennnn. 154
17.3. Capturing a screenshot when atest failSooovviiiiii i, 155
17.4. Setting up multiple browser Configurationsccccuiiiiiiiiiiie e e e 156

PHPUnit Manua

17.5. Use a directory of Selenese/HTML files astestSuoiviiiiiiiiiii e, 158
19.1. The assertTrue() and isTrue() methods of the PHPUnNit_Framework Assertclass............ 164
19.2. The PHPUnit_Framework_Constraint ISTrue ClaSScoovvuieiiieiiiieeiieeciieeeieeeen 165
19.3. A SIMPIE LESE HISEONEr .uuiiiiiie e e e 165
19.4. The ReEPEAEATESE DECOBIONvvviiiiieei e eeei e e e e e e e e e e e e e e e e et e e e e eanaas 166

19.5. A data-driven test

Xi

Chapter 1. Automating Tests

Even good programmers make mistakes. The difference between a good programmer and a bad pro-
grammer isthat the good programmer uses tests to detect his mistakes as soon as possible. The sooner
you test for amistake the greater your chance of finding it and the lessit will cost to find and fix. This
explains why leaving testing until just before releasing softwareis so problematic. Most errors do not
get caught at all, and the cost of fixing the onesyou do catch is so high that you have to perform triage
with the errors because you just cannot afford to fix them all.

Testing with PHPUnit is not atotally different activity from what you should aready be doing. It is
just adifferent way of doing it. The difference is between testing, that is, checking that your program
behaves as expected, and performing a battery of tests, runnable code-fragments that automatically
test the correctness of parts (units) of the software. These runnable code-fragmentsare called unit tests.

In this chapter we will go from simple pr i nt -based testing code to a fully automated test. Imagine
that we have been asked to test PHP's built-in ar r ay. One bit of functionality to test is the function
count () . For anewly created array we expect the count () function to return 0. After we add an
element, count () should return 1. Example 1.1, “Testing array operations’ shows what we want
to test.

Example 1.1. Testing array oper ations

<?php
$fixture = array();

$fixture[] = "elenent';

?>

A really simple way to check whether we are getting the results we expect is to print the result of
count () before and after adding the element (see Example 1.2, “Using print to test array opera-
tions’). If weget 0 and then 1, ar r ay and count () behave as expected.

Example 1.2. Using print to test array operations

<?php

$fixture = array();

print count($fixture) . "\n";
$fixture[] = "'elenent

print count($fixture) . "\n";
?>

0

1

Now, we would like to move from tests that require manual interpretation to tests that can run auto-
matically. In Example 1.3, “ Comparing expected and actual valuesto test array operations’, we write
the comparison of the expected and actual valuesinto thetest code and print ok if thevaluesare equal.
If we ever seeanot ok message, we know something is wrong.

Example 1.3. Comparing expected and actual valuesto test array operations

<?php
$fixture = array();
print count($fixture) == 0 ? "ok\n" : "not ok\n"

Automating Tests

$fixture[] = "elenent';

print count($fixture) == 1 ? "ok\n" : "not ok\n"
?>

ok

ok

We now factor out the comparison of expected and actual valuesinto afunction that raises an Excep-
tion when there isadiscrepancy (Example 1.4, “Using an assertion function to test array operations’).
This gives ustwo benefits: the writing of tests becomes easier and we only get output when something
iswrong.

Example 1.4. Using an assertion function to test array operations

<?php

$fixture = array();

assert True(count ($fi xture) == 0);
$fixture[] = "elenent';

assert True(count ($fi xture) == 1);

function assertTrue($condition)

{
if (!$condition) {
t hrow new Exception(' Assertion failed.");
}
}
?>

The test is now completely automated. Instead of just testing as we did with our first version, with
this version we have an automated test.

The goal of using automated testsis to make fewer mistakes. While your code will still not be perfect,
even with excellent tests, you will likely see adramatic reduction in defects once you start automating
tests. Automated tests give you justified confidence in your code. Y ou can use this confidence to take
more daring leaps in design (Refactoring), get along with your teammates better (Cross-Team Tests),
improve relations with your customers, and go home every night with proof that the system is better
now than it was this morning because of your efforts.

Chapter 2. PHPUnit's Goals

So far, we only have two tests for the ar r ay built-in and the count () function. When we start to
test the numerous ar ray_* () functions PHP offers, we will need to write a test for each of them.
We could write the infrastructure for all these tests from scratch. However, it is much better to write
a testing infrastructure once and then write only the unique parts of each test. PHPUnit is such an
infrastructure.

A framework such as PHPUniIt has to resolve a set of constraints, some of which seem always to
conflict with each other. Simultaneoudly, tests should be:

Easy to learn to write. If it's hard to learn how to write tests, developers will not learn
to write them.

Easy to write. If tests are not easy to write, developers will not write them.

Easy to read. Test code should contain no extraneous overhead so that the test
itself does not get lost in noise that surrounds it.

Easy to execute. The tests should run at the touch of a button and present their
resultsin aclear and unambiguous format.

Quick to execute. Tests should run fast so they can be run hundreds or thousands
of times aday.

| solated. The tests should not affect each other. If the order in which the

tests are run changes, the results of the tests should not change.

Composable. We should be able to run any number or combination of tests
together. Thisisacorollary of isolation.

There are two main clashes between these constraints:

Easy to learn to write versus easy Tests do not generally require al the flexibility of a program-

towrite. ming language. Many testing tools provide their own scripting
language that only includes the minimum necessary features
for writing tests. The resulting tests are easy to read and write
because they have no noise to distract you from the content of
thetests. However, learning yet another programming language
and set of programming tools is inconvenient and clutters the
mind.

I solated versus quick to execute. If you want the results of onetest to have no effect on theresults
of another test, each test should createthe full state of theworld
before it begins to execute and return the world to its original
state when it finishes. However, setting up theworld can take a
long time: for example connecting to adatabase and initializing
it to aknown state using redlistic data.

PHPUnNit attempts to resolve these conflicts by using PHP as the testing language. Sometimes the full
power of PHP is averkill for writing little straight-line tests, but by using PHP we leverage al the
experience and tools programmers already have in place. Since we are trying to convince reluctant
testers, lowering the barrier to writing those initial testsis particularly important.

PHPUnIt errs on the side of isolation over quick execution. Isolated tests are valuable because they
provide high-quality feedback. Y ou do not get a report with abunch of test failures, which werereally
caused because one test at the beginning of the suite failed and left the world messed up for the rest
of the tests. This orientation towards isolated tests encourages designs with alarge number of smple
objects. Each object can be tested quickly in isolation. The result is better designs and faster tests.

PHPUnit's Goals

PHPUnNIt assumes that most tests succeed and it is not worth reporting the details of successful tests.
When atest fails, that fact isworth noting and reporting. The vast majority of tests should succeed and
are not worth commenting on except to count the number of tests that run. Thisis an assumption that
isreally built into the reporting classes, and not into the core of PHPUNit. When the results of atest
run are reported, you see how many tests were executed, but you only see details for those that failed.

Tests are expected to be fine-grained, testing one aspect of one object. Hence, thefirst time atest fails,
execution of the test halts, and PHPUnit reportsthe failure. It isan art to test by running in many small
tests. Fine-grained tests improve the overall design of the system.

When you test an object with PHPUnit, you do so only through the object's public interface. Testing
based only on publicly visible behaviour encourages you to confront and solve difficult design prob-
lems earlier, before the results of poor design can infect large parts of the system.

Chapter 3. Installing PHPUnNIt

There a three supported ways of installing PHPUnNit. You can use the PEAR Ingtaller [http:/
pear.php.net/manual/en/guide.users.commandline.cli.php] or Composer [http://getcomposer.org/] to
download and install PHPUNIt as well as its dependencies. You can also download a PHP Archive
(PHAR) [http://php.net/phar] of PHPUnit that has all required (aswell as some optional) dependencies
of PHPUnit bundled in asinglefile.

Note

Support for Composer and PHP Archive (PHAR) was added in PHPUnit 3.7 (and is known
to be stable since PHPUnit 3.7.5). Earlier rel eases of PHPUnit are not available through these
distribution channels.

Note

PHPUnIt 3.7 requires PHP 5.3.3 (or later) but PHP 5.4.7 (or later) is highly recommended.

PHP_CodeCoverage, the library that is used by PHPUnit to collect and process code cover-
age information, depends on Xdebug 2.0.5 (or later) but Xdebug 2.2.0 (or later) is highly
recommended.

PEAR

The following two commands (which you may have to run asr oot) are all that is required to install
PHPUnit using the PEAR Installer:

pear install pear.phpunit.de/PHPUnitpear config-set auto_di scover 1
pear install pear.phpunit.de/PHPUnit

Caution

Depending on your OS distribution and/or your PHP environment, you may need to install
PEAR or update your existing PEAR installation before you can proceed with theinstructions
in this section.

sudo pear upgrade PEARusually sufficesto upgrade an existing PEAR installation.
The PEAR Manual [http://pear.php.net/manual/en/installation.getting.php] explains how to
perform afresh installation of PEAR.

Composer

To add PHPUniIt as a local, per-project dependency to your project, simply add a dependency on
phpuni t/ phpunit to your project's conposer. j son file. Here is a minimal example of a
conposer . j son filethat just defines a development-time dependency on PHPUnit 3.7:

{
"require-dev": {
"phpuni t/phpunit": "3.7.*"
}
}

For a standalone, system-wide installation via Composer, a conposer . j son similar to the one
shown below can be used from an arbitary directory.

http://pear.php.net/manual/en/guide.users.commandline.cli.php
http://pear.php.net/manual/en/guide.users.commandline.cli.php
http://pear.php.net/manual/en/guide.users.commandline.cli.php
http://getcomposer.org/
http://getcomposer.org/
http://php.net/phar
http://php.net/phar
http://php.net/phar
http://pear.php.net/manual/en/installation.getting.php
http://pear.php.net/manual/en/installation.getting.php

Installing PHPUnNit

{
"require": {
"phpuni t/ phpunit":
}
"config": {
"bin-dir":
}
}

"3.7.%"

"/usr/local/bin/"

PHP Archive (PHAR)

You can also download a PHP Archive (PHAR) of PHPUnit that has all required (as well as some
optional) dependencies of PHPUnit bundled in asingle file:

chnod +x phpuni t. pharwget
chnod +x phpuni t. phar

Optional packages

http://pear. phpunit. de/ get/ phpunit. phar

The following optional packages are available:

DbUni t

PHP_I nvoker

PHPUNi t _Sel eni um

DbUnit port for PHP/PHPUnIt to support database interaction
testing.

This package can be installed via PEAR using the following
command:

pear install phpunit/DbUnit

This package can beinstalled via Composer by addding thefol-
lowing " r equi r e- dev" dependency:

"phpuni t/dbunit": ">=1.2"

A utility classfor invoking callables with atimeout. This pack-
age isrequired to enforce test timeouts in strict mode.

This package can be installed using the following command:
pear install phpunit/PHP_I nvoker

This package can beinstalled via Composer by addding thefol-
lowing " r equi r e- dev" dependency:

“phpuni t/ php-invoker": "*"
Selenium RC integration for PHPUnit.

This package can be installed via PEAR using the following
command:

pear install phpunit/PHPUnit_Sel eni um

This package can beinstalled via Composer by addding thefol-
lowing " r equi r e- dev" dependency:

6

Installing PHPUnNit

PHPUni t _Story

PHPUni t _Skel et onGener at or

"phpuni t/ phpuni t -sel eni unt': ">=1.2"

Story-based test runner for Behavior-Driven Development with
PHPUniIt.

This package can be installed via PEAR using the following
command:

pear install phpunit/PHPUnit_Story

This package can beinstalled via Composer by addding thefol-
lowing " r equi r e- dev" dependency:

"phpuni t/ phpuni t-story": "*"

Tool that can generate skeleton test classes from production
code classes and vice versa.

This package can be installed using the following command:

pear install phpunit/PHPUNnit_Skel et onGener at or

PHPUni t _Test Li st ener _DBUS A TestListener that sends eventsto DBUS.

This package can be installed using the following command:

pear install phpunit/PHPUnit_TestLi stener_DBUS

PHPUNi t _Test Li st ener _XHPr oA TestListener that uses XHProf for automated profiling of the

tested code.

This package can be installed using the following command:

pear install phpunit/PHPUNnit_TestLi stener_XHProf

PHPUni t _Ti cket Li st ener _Foghtigket listener that interacts with the Fogbugz issue API.

This package can be installed using the following command:

pear install phpunit/PHPUNnit_TicketListener_Fogbugz

PHPUni t _Ti cket Li st ener _G tAdtilcket listener that interacts with the GitHub issue API.

This package can be installed using the following command:

pear install phpunit/PHPUnit _TicketListener_GtHub

PHPUni t _Ti cket Li st ener _Goojltiekedistener that interacts with the Google Codeissue API.

This package can be installed using the following command:

pear install phpunit/PHPUNnit_Ti cketListener_Googl eCode

PHPUni t _Ti cket Li st ener _Tr a& ticket listener that interacts with the Trac issue API.

This package can be installed using the following command:

pear install phpunit/PHPUNnit _TicketListener_Trac

Installing PHPUnNit

Upgrading

This section serves as a collection of minor BC issues that one might run into when upgrading from

PHPUnNIt 3.6 to PHPUNIt 3.7.

The upgrade should be rather easy and work without any issues asit wastested against all major Open
Source frameworks and there was not a single problem for them. Still every project is different and if
you did not get around to trying one of the rel ease candidates and have ran into an issue this document

might provide some help.

Removed depr ecated Out-
putTestCase

Current working directory will
berestored after each test case

Test listenerstrigger one au-
toload call

Parameter sfor mock objects do
not get cloned anymore

addUncover edFi | es-
Fromhi t el i st wasremoved
in favor of pr ocessUncov-
eredFi | esFromii teli st

Default value of cacheTokens
changed tof al se

The class PHPUnit _Ext ensi ons_Qut put Test Case
has been removed. PHPUnit 3.6 issued a deprecation notice
when it was used. To see how output can now be tested look
into the section called “ Testing Output”.

If atest changes the current working directory (cwd) PHPUnNit
raninto issueswhen generating code coverage output. Now that
the cwd is restored after each test case you might find that one
of your tests depended on ancther test changing the cwd. Some-
thing that isn't desirable anyways and should be easy to fix.

When using custom test listeners as described in the section
called “Test Listeners” PHPUnit silently ignored missing test
listeners and it was quite hard to debug that issues for the user.
Now one autoload call will be triggered trying to locate the
class. If your autoloader produces an error when it doesn't find
atest listener you might run into an issue here. Removing the
listener or making sure it's loaded in your boot st r ap. php
will solvethis.

Previoudly all object parameters where cloned when mocking.
This lead to issues when testing trying to check whether the
same object was passed to method or not and other problem
with uncloneabl e objects. Asalong standing feature request by
many thisbehavior was changed. Example 10.14, “ Testing that
amethod gets called once and with the identical object as was
passed” shows where the new implementation could be useful.
Example 10.15, “ Create amock object with cloning parameters
enabled” shows how to switch back to previous behavior.

When generating code coverage and using <whi t el i st
addUncoveredFi | esFromitelist="true"> dl
uncovered files got included by PHPUnit. Thiswasanissuefor
people with executable code in those files. PHPUnit will now
scan the file and guess what code is executable and what code
is not without including it. This might lead to different code
coverage reports.

To switch back to the old behavior the setting <whi t el i st
processUncover edFi | esFromMitel i st=="true">
can be used. If you want the behavior with PHPUnit 3.6. and
3.7. it is possible to use both settings for awhile.

Since PHPUnit 3. 7. 2 we turned off the caching of tokenized
filesby default. When processing code coverage reportsfor big
projects this cache consumed a ot of memory and due to the
change in whitelist behavior it was problematic for folks with
code bases with more than a couple of thousand classes.

Installing PHPUnNit

If your project issmaller or you have enough memory you will
get aruntime benefit by adding cacheTokens="t rue" to
your phpuni t. xnl file. See the section called “ PHPUnit”.

Chapter 4. Writing Tests for PHPUnNIt

Example 4.1, “Testing array operations with PHPUnit” shows how we can write tests using PHPUnit
that exercise PHP's array operations. The example introduces the basic conventions and steps for
writing tests with PHPUnit:

1. ThetestsforaclassCl ass gointoaclassCl assTest .
2. Cl assTest inherits (most of the time) from PHPUni t _Fr anmewor k_Test Case.
3.

4. Inside the test methods, assertion methods such as assert Equal s() (see the section called
“Assertions”) are used to assert that an actual value matches an expected value.

Example 4.1. Testing array operations with PHPUnit

<?php
cl ass StackTest extends PHPUnit_Franewor k_Test Case
{
public function testPushAndPop()
{
$stack = array();
$t hi s- >assert Equal s(0, count ($stack));
array_push($stack, 'foo');
$t hi s- >assert Equal s(' foo', $stack[count ($stack)-1]);
$t hi s- >assert Equal s(1, count ($stack));
$t hi s- >assert Equal s(' foo', array_pop($stack));
$t hi s- >assert Equal s(0, count ($stack));
}
}
?>

Whenever you are tempted to type something intoapr i nt statement or adebugger
expression, write it as atest instead.
—Martin Fowler

Test Dependencies

Unit Tests are primarily written as a good practice to help developers identify and
fix bugs, to refactor code and to serve as documentation for a unit of software under
test. To achieve these benefits, unit testsideal ly should cover al the possible pathsin
aprogram. One unit test usually covers one specific path in one function or method.
However atest method is not necessary an encapsulated, independent entity. Often
thereareimplicit dependencies between test methods, hidden in the implementation
scenario of atest.

—Adrian Kuhn et. al.

PHPUnit supports the declaration of explicit dependencies between test methods. Such dependencies
do not define the order in which the test methods are to be executed but they allow the returning of an
instance of the test fixture by a producer and passing it to the dependent consumers.

» A producer is atest method that yields its unit under test as return value.
» A consumer is atest method that depends on one or more producers and their return values.

Example 4.2, “Using the @lepends annotation to express dependencies’ shows how to use the
@lepends annotation to express dependencies between test methods.

10

Writing Tests for PHPUnNit

Example 4.2. Using the @ epends annotation to express dependencies

<?php
cl ass StackTest extends PHPUnit_Franewor k_Test Case

{
public function testEnpty()

{
$stack = array();

$t hi s- >assert Enpt y($st ack) ;

return $stack;

public function testPush(array $stack)

{
array_push($stack, 'foo')
$t hi s- >assert Equal s(' foo', $stack[count ($stack)-1]);
$t hi s- >assert Not Enpt y($st ack) ;
return $stack;
}

public function testPop(array $stack)

{
$t hi s- >assert Equal s(' foo', array_pop($stack));

$t hi s- >assert Enpt y($st ack) ;

}

?>

In the example above, the first test, t est Enpt y () , creates anew array and asserts that it is empty.
Thetest then returnsthe fixture asitsresult. The second test, t est Push() , dependsont est Enp-
ty() and is passed the result of that depended-upon test asits argument. Finally, t est Pop() de-
pendsupont est Push() .

To quickly localize defects, we want our attention to be focussed on relevant failing tests. Thisiswhy
PHPUnNIt skips the execution of a test when a depended-upon test has failed. This improves defect
localization by exploiting the dependencies between tests as shown in Example 4.3, “Exploiting the
dependencies between tests”.

Example 4.3. Exploiting the dependencies between tests

<?php
cl ass DependencyFai | ureTest extends PHPUnit _Framewor k_Test Case

{

public function testOne()

{
}

$t hi s- >assert Tr ue(FALSE)

public function testTwo()
{
}

11

Writing Tests for PHPUnNit

?>

PHPUnit 3.7.0 by Sebastian Bergmann.
FS

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) DependencyFai |l ureTest::test One
Fai |l ed asserting that false is true.

/ home/ sb/ DependencyFai | ureTest . php: 6
There was 1 skipped test:
1) DependencyFai |l ureTest: :test Two

This test depends on "DependencyFail ureTest::testOne" to pass.

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1, Skipped: 1.phpunit --verbose DependencyFail ureTest
PHPUnit 3.7.0 by Sebastian Bergmann.

FS

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) DependencyFai |l ureTest::test One
Fai |l ed asserting that false is true.

/ home/ sb/ DependencyFai | ureTest . php: 6
There was 1 skipped test:

1) DependencyFai |l ureTest: :test Two
This test depends on "DependencyFail ureTest::testOne" to pass.

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1, Skipped: 1.

A test may have more than one @ epends annotation. PHPUnit does not change the order in which
tests are executed, you have to ensure that the dependencies of atest can actually be met before the
testisrun.

Data Providers

A test method can accept arbitrary arguments. These arguments are to be provided by adata provider
method (pr ovi der () in Example 4.4, “Using a data provider that returns an array of arrays’). The
data provider method to be used is specified using the @lat aPr ovi der annotation.

A data provider method must be publ i ¢ and either return an array of arrays or an object that imple-
mentsthel t er at or interface and yields an array for each iteration step. For each array that is part
of the collection the test method will be called with the contents of the array as its arguments.
Example 4.4. Using a data provider that returnsan array of arrays

<?php

12

Writing Tests for PHPUnNit

cl ass Dat aTest extends PHPUnit_Franewor k_Test Case

{

public function testAdd($a, $b, $c)

{
$t hi s- >assert Equal s($c, $a + $b);
}
public function provider()
{
return array(
array(0, 0, 0),
array(0, 1, 1),
array(1, 0, 1),
array(1, 1, 3)
)
}
}
?>

PHPUnit 3.7.0 by Sebastian Ber gnann.
.F

Time: 0 seconds, Menory: 5.75M

There was 1 failure:

1) DataTest::testAdd with data set #3 (1, 1, 3)
Fai |l ed asserting that 2 matches expected 3.

/ hone/ sb/ Dat aTest . php: 9
FAI LURES!
Tests: 4, Assertions: 4, Failures: 1.phpunit DataTest
PHPUnit 3.7.0 by Sebastian Ber gnann.
.F
Time: 0 seconds, Menory: 5.75M

There was 1 failure:

1) DataTest::testAdd with data set #3 (1, 1, 3)
Fai |l ed asserting that 2 matches expected 3.

/ hone/ sb/ Dat aTest . php: 9

FAI LURES!
Tests: 4, Assertions: 4, Failures: 1.

Example 4.5. Using a data provider that returnsan Iterator object

<?php
require 'CsvFilelterator. php';

cl ass Dat aTest extends PHPUnit_Franewor k_Test Case

{

13

Writing Tests for PHPUnNit

public function testAdd($a, $b, $c)

{
$t hi s- >assert Equal s($c, $a + $b);
}
public function provider()
{
return new CsvFilelterator('data.csv');
}
}
?>

PHPUnit 3.7.0 by Sebastian Ber gnann.
.F

Time: 0 seconds, Menory: 5.75M

There was 1 failure:

1) DataTest::testAdd with data set #3 ('1', '1', '3")
Fai |l ed asserting that 2 matches expected '3'.

/ honme/ sb/ Dat aTest . php: 11

FAI LURES!
Tests: 4, Assertions: 4, Failures: 1.phpunit DataTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

.F
Time: 0 seconds, Menory: 5.75M
There was 1 failure:

1) DataTest::testAdd with data set #3 (*'1', '1', '3")
Fai |l ed asserting that 2 matches expected '3'.

/ honme/ sb/ Dat aTest . php: 11

FAI LURES!
Tests: 4, Assertions: 4, Failures: 1.

Example 4.6. The CsvFilelterator class

<?php

class CsvFilelterator inplenents Iterator {
protected $file;
protected $key = 0;
protected $current;

public function _ _construct($file) {
$this->file = fopen(sfile, 'r');
}

public function __destruct() {
fclose($this->file);
}

public function rewi nd() {
rewi nd($this->file);

14

Writing Tests for PHPUnNit

$t his->current = fgetcsv($this->file);
$t hi s- >key = 0;
}

public function valid() {
return !feof ($this->file);

}

public function key() {
return $this->key;

}

public function current() {
return $this->current

}
public function next() {

$t his->current = fgetcsv($this->file);
$t hi s- >key++;

Note

When atest receives input from both a @lat aPr ovi der method and from one or more
testsit @epends on, the arguments from the data provider will come before the ones from
depended-upon tests.

Note

When atest depends on atest that uses data providers, the depending test will be executed
when the test it depends upon is successful for at least one data set. The result of atest that
uses data providers cannot be injected into a depending test.

Note
All data providers are executed before both the call to the set UpBef or eCl ass static
method and thefirst call totheset Up method. Because of that you can't access any variables

you create there from within adata provider. Thisisrequired in order for PHPUnit to be able
to compute the total number of tests.

Testing Exceptions

Example 4.7, “ Using the @expectedException annotation” shows how to use the @xpect edEx-
cept i on annotation to test whether an exception is thrown inside the tested code.

Example 4.7. Using the @expectedException annotation

<?php
cl ass ExceptionTest extends PHPUnit_Framewor k_Test Case

{

public function testException()

15

Writing Tests for PHPUnNit

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 4.75M
There was 1 failure:

1) ExceptionTest::testException

Expect ed exception | nvali dArgunment Excepti on

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.phpunit ExceptionTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

F
Time: 0 seconds, Menory: 4.75M
There was 1 failure:

1) ExceptionTest::testException
Expect ed exception | nvali dArgunment Excepti on

FAl LURES!
Tests: 1, Assertions: 1, Failures: 1.

Additionally, you can use @xpect edExcept i onMessage and @xpect edExcepti on-
Code in combination with @xpect edExcept i on to test the exception message and exception
code as shown in Example 4.8, “Using the @expectedExceptionM essage and @expectedException-
Code annotations’.

Example 4.8. Using the @expectedExceptionM essage and
@expectedExceptionCode annotations

<?php
cl ass ExceptionTest extends PHPUnit_Framewor k_Test Case

{

public function testExcepti onHasRi ght Message()
{

}

throw new I nval i dAr gunent Excepti on(' Sone Message', 10);

public function testExcepti onHasRi ght Code()
{

}

throw new I nval i dAr gunent Excepti on(' Sone Message', 10);

PHPUnit 3.7.0 by Sebastian Bergmann.

16

Writing Tests for PHPUnNit

FF
Time: 0 seconds, Menory: 3.00M

There were 2 failures:

1) ExceptionTest::test Excepti onHasR ght Message

Fai | ed asserting that exception nessage ' Sone Message' contains 'R ght Message'

2) ExceptionTest::testExceptionHasRi ght Code
Fai | ed asserting that expected exception code 20 is equal to 10.

FAI LURES!

Tests: 2, Assertions: 4, Failures: 2.phpunit ExceptionTest
PHPUnit 3.7.0 by Sebastian Bergmann.

FF

Time: 0 seconds, Menory: 3.00M

There were 2 failures:

1) ExceptionTest::test Excepti onHasR ght Message
Fai | ed asserting that exception nessage ' Sone Message' contains 'R ght Message'

2) ExceptionTest::testExceptionHasRi ght Code
Fai | ed asserting that expected exception code 20 is equal to 10.

FAI LURES
Tests: 2, Assertions: 4, Failures: 2.

More examples of @xpect edExcepti onMessage and @xpect edExcepti onCode are
shown in the section caled “@xpect edExcept i onMessage” and the section called “@x-
pect edExcepti onCode” respectively.

Alternatively, you can usethe set Expect edExcept i on() method to set the expected exception
as shown in Example 4.9, “Expecting an exception to be raised by the tested code”.

Example 4.9. Expecting an exception to beraised by the tested code

<?php
cl ass ExceptionTest extends PHPUnit _Framewor k_Test Case
{
public function testException()
{
$t hi s- >set Expect edExcepti on(' | nval i dAr gunent Exception');
}
public function testExcepti onHasRi ght Message()
{
$t hi s- >set Expect edExcepti on(
"I nval i dAr gunent Exception', 'Ri ght Message
)
t hrow new | nval i dArgunment Excepti on(' Some Message', 10);
}
public function testExcepti onHasRi ght Code()
{

$t hi s- >set Expect edExcepti on(
"I nval i dAr gunent Exception', 'Right Message', 20

17

Writing Tests for PHPUnNit

IE
t hrow new | nval i dArgunent Excepti on(' The Ri ght Message'
}

} 2>

PHPUni t 3.7.0 by Sebastian Bergmann.
FFF

Time: 0 seconds, Menory: 3.00M
There were 3 failures:

1) ExceptionTest::testException

Expect ed exception |nvali dArgunent Exception

2) ExceptionTest::testExcepti onHasRi ght Message
Fai | ed asserting that exception nessage ' Sone Message' contains

3) ExceptionTest::testExcepti onHasRi ght Code

Fai | ed asserting that expected exception code 20 is equal to 10.

FAI LURES!

Tests: 3, Assertions: 6, Failures: 3.phpunit ExceptionTest
PHPUNit 3.7.0 by Sebastian Ber gnann.

FFF

Time: 0 seconds, Menory: 3.00M

There were 3 failures:

1) ExceptionTest::testException
Expect ed exception | nvali dArgunent Exception

2) ExceptionTest::testExceptionHasRi ght Message
Fai | ed asserting that exception nessage ' Sone Message' contains

3) ExceptionTest::testExcepti onHasRi ght Code

Fai | ed asserting that expected exception code 20 is equal to 10.

FAI LURES!
Tests: 3, Assertions: 6, Failures: 3.

10);

' Ri ght Message'.

' Ri ght Message'.

Table 4.1, “Methods for testing exceptions” shows the methods provided for testing exceptions.

Table4.1. Methodsfor testing exceptions

M ethod Meaning

voi d set Expect edExcepti on(string |Settheexpected $excepti onName, $ex-
$excepti onNane[, string $excep- cepti onMessage, and $except i onCode.

ti onMessage = '', integer $ex-
ceptionCode = NULL])
String get Expect edException() Return the name of the expected exception.

Y ou can also use the approach shown in Example 4.10, “ Alternative approach to testing exceptions’

to test exceptions.

18

Writing Tests for PHPUnNit

Example 4.10. Alter native approach to testing exceptions

<?php
cl ass ExceptionTest extends PHPUnit_Framewor k_Test Case {
public function testException() ({

try {
}
catch (InvalidArgunment Exception $expected) {
return;
}
$t his->fail (' An expected excepti on has not been raised."');
}
}
?>

If the code that is expected to raise an exception in Example 4.10, “Alternative approach to testing
exceptions’ does not raise the expected exception, the subsequent call tof ai | () will halt thetest and
signal a problem with the test. If the expected exception is raised, the cat ch block will be executed,
and the test will end successfully.

Testing PHP Errors

By default, PHPUnit converts PHP errors, warnings, and notices that are triggered during the
execution of a test to an exception. Using these exceptions, you can, for instance, expect a test to
trigger a PHP error as shown in Example 4.11, “ Expecting a PHP error using @expectedException”.

Example 4.11. Expecting a PHP error using @expectedException

<?php
cl ass Expect edErrorTest extends PHPUnit _Framewor k_Test Case

{

public function testFailinglnclude()

{
}

i nclude 'not _existing file.php'

PHPUNit 3.7.0 by Sebastian Ber gnann.

Time: 0 seconds, Menory: 5.25M

OK (1 test, 1 assertion)phpunit ExpectedErrorTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

Time: 0 seconds, Menory: 5.25M

OK (1 test, 1 assertion)

19

Writing Tests for PHPUnNit

PHPUni t _Framework _Error_Notice and PHPUnit_Framewor k_Error_Warni ng
represent PHP notices and warnings, respectively.

Note

Y ou should be as specific as possible when testing exceptions. Testing for classesthat aretoo
generic might lead to undesirable side-effects. Accordingly, testing for theExcept i on class
with @xpect edExcepti on or set Expect edExcepti on() isnolonger permitted.

When testing that relies on php functions that trigger errorslikef open it can sometimes be useful to
use error suppression while testing. This allows you to check the return values by suppressing notices
that would lead to a phpunit PHPUni t _Fr amewor k_Error _Noti ce.

Example 4.12. Testing return values of code that uses PHP Errors

<?php
cl ass Error Suppressi onTest extends PHPUnit _Franmewor k_Test Case
{
public function testFileWiting() {
$witer = new FileWiter;

$t hi s- >assertFal se(@witer->wite('/is-not-witeable/file , '"stuff'));
}
class FileWiter
{
public function wite($file, $content) {
$file = fopen($file, 'W);
if($file == false) {
return fal se;
}
}
}
?>

PHPUNnit 3.7.0 by Sebastian Ber gnann.

Time: 1 seconds, Menory: 5.25M

OK (1 test, 1 assertion)phpunit ErrorSuppressionTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

Time: 1 seconds, Menory: 5.25M

K (1 test, 1 assertion)

Without the error suppression the test would fail reporting fopen(/is-not-wite-
able/file): failed to open stream No such file or directory.

Testing Output

Sometimes you want to assert that the execution of amethod, for instance, generates an expected out-
put (viaecho or pri nt, for example). The PHPUNni t _Fr amewor k_Test Case class uses PHP's
Output Buffering [http://www.php.net/manual/en/ref.outcontrol .php] feature to provide the function-
ality that is necessary for this.

20

http://www.php.net/manual/en/ref.outcontrol.php
http://www.php.net/manual/en/ref.outcontrol.php

Writing Tests for PHPUnNit

Example 4.13, “Testing the output of a function or method” shows how to use the expect Qut -
put St ri ng() method to set the expected output. If this expected output is not generated, the test
will be counted as afailure.

Example 4.13. Testing the output of a function or method

<?php
cl ass Qut put Test extends PHPUnit_Framewor k_Test Case
{
public function testExpectFooAct ual Foo()
{
$t hi s- >expect Qut put String(' foo');
print 'foo';
}
public function testExpectBarActual Baz()
{
$t hi s- >expect Qut put String(' bar');
print 'baz';
}
}
?>

PHPUnit 3.7.0 by Sebastian Ber gnann.
.F

Time: 0 seconds, Menory: 5.75M
There was 1 failure:

1) CQutput Test::test Expect Bar Act ual Baz

Fai |l ed asserting that two strings are equal .
--- Expected

+++ Act ual

@@ @@
-' bar'
+' baz'

FAI LURES!
Tests: 2, Assertions: 2, Failures: 1.phpunit Qutput Test
PHPUnit 3.7.0 by Sebastian Ber gnann.

.F
Time: 0 seconds, Menory: 5.75M
There was 1 failure:

1) CQutput Test::test Expect Bar Act ual Baz

Fai |l ed asserting that two strings are equal .
--- Expected

+++ Act ual

@@ @@

-' bar'

+' baz'

FAI LURES!
Tests: 2, Assertions: 2, Failures: 1.

Table 4.2, “Methods for testing output” shows the methods provided for testing output

21

Writing Tests for PHPUnNit

Table 4.2. Methods for testing output

M ethod Meaning
voi d expect Qut put Regex(string Set up the expectation that the output matches a
$r egul ar Expr essi on) $regul ar Expr essi on.
voi d expect Qut put String(string Set up the expectation that the output is equal to
$expect edStri ng) an $expect edSt ri ng.
bool setQutput Cal | back(cal | abl e |Setsup acallback that isused to, for instance,
$cal | back) normalize the actual output.

Note

Please note that PHPUnIt swallows all output that is emitted during the execution of atest.
In strict mode, atest that emits output will fail.

Assertions

This section lists the various assertion methods that are available.

assert ArrayHasKey()

assert ArrayHasKey(m xed $key, array $array[, string $nessage = ''])
Reports an error identified by $message if $ar r ay does not have the $key.

assert ArrayNot HasKey() istheinverse of this assertion and takes the same arguments.

Example 4.14. Usage of assertArrayHasK ey()

<?php
cl ass ArrayHasKeyTest extends PHPUnit_Franmewor k_Test Case
{
public function testFailure()
{
$t hi s- >assert ArrayHasKey(' foo', array('bar' => "baz'));
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) ArrayHasKeyTest::testFailure
Fai |l ed asserting that an array has the key 'foo'.

/ home/ sb/ Ar r ayHasKeyTest . php: 6
FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit ArrayHasKeyTest
PHPUnit 3.7.0 by Sebastian Bergmann.

22

Writing Tests for PHPUnNit

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) ArrayHasKeyTest::testFailure
Fai |l ed asserting that an array has the key 'foo'.

/ home/ sb/ Ar r ayHasKeyTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Cl assHasAttri but e()

assertCl assHasAttri bute(string $attri buteName, string $classNane[,
string $message = ''])

Reports an error identified by $message if $cl assNarne: : at t ri but eNarre does not exist.

assert Cl assNot HasAt tri but e() istheinverse of this assertion and takes the same argu-
ments.

Example 4.15. Usage of assertClassHasAttribute()

<?php
cl ass O assHasAttributeTest extends PHPUnit_Franmewor k_Test Case
{

public function testFailure()

{

$t hi s- >assert Cl assHasAttribute('foo', 'stdd ass');

}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Tinme: 0 seconds, Menory: 4.75M
There was 1 failure:

1) d assHasAttributeTest::testFailure
Fai |l ed asserting that class "stdC ass" has attribute "foo".

/ home/ sb/ Cl assHasAt tri but eTest. php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit C assHasAttributeTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 4.75M

There was 1 failure:

1) dassHasAttributeTest::testFailure
Fai |l ed asserting that class "stdC ass" has attribute "foo".

23

Writing Tests for PHPUnNit

/ home/ sb/ Cl assHasAt tri but eTest. php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Cl assHasStati cAttri bute()

assertCl assHasStati cAttribute(string $attributeNane, string $cl ass-
Name[, string $message = ''])

Reports an error identified by $message if $cl assNarne: : at t ri but eNare does not exist.

assert Cl assNot HasSt ati cAttri but e() istheinverse of thisassertion and takes the same
arguments.

Example 4.16. Usage of assertClassHasStaticAttribute()

<?php
class C assHasStati cAttributeTest extends PHPUnit_Franewor k_Test Case
{

public function testFailure()

{

$t hi s- >assert Cl assHasStati cAttribute(' foo', 'stdd ass');

}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Tinme: 0 seconds, Menory: 4.75M
There was 1 failure:

1) d assHasStaticAttributeTest::testFailure
Fai |l ed asserting that class "stdd ass" has static attribute "foo".

/ home/ sb/ Cl assHasSt ati cAttri buteTest. php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit Cl assHasStaticAttributeTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 4.75M

There was 1 failure:

1) dassHasStaticAttributeTest::testFailure
Fai |l ed asserting that class "stdd ass" has static attribute "foo".

/ home/ sb/ Cl assHasSt ati cAttri buteTest. php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Cont ai ns()

24

Writing Tests for PHPUnNit

assertContains(m xed $needle, Iterator|array $haystack[, string
$message = ''])

Reports an error identified by $nmessage if $needl e isnot an element of $hayst ack.
assert Not Cont ai ns() istheinverse of this assertion and takes the same arguments.

assert Attri buteContai ns() andassert Attri but eNot Cont ai ns() areconvenience
wrappersthat useapubl i ¢, pr ot ect ed, or pri vat e attribute of aclass or object asthe haystack.

Example 4.17. Usage of assertContains()

<?php
cl ass Contai nsTest extends PHPUnit_Franewor k_Test Case
{

public function testFailure()

{

$t hi s- >assert Contains(4, array(l, 2, 3));

}
}
?>

PHPUnit 3.7.0 by Sebastian Ber gnann.
=

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) ContainsTest::testFailure
Fai |l ed asserting that an array contains 4.

/ hone/ sb/ Cont ai nsTest . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit ContainsTest
PHPUNit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) ContainsTest::testFailure
Fai |l ed asserting that an array contains 4.

/ hone/ sb/ Cont ai nsTest . php: 6

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assert Contai ns(string $needl e, string $haystack[, string $nessage =

1)

Reports an error identified by $message if $needl e isnot asubstring of $hayst ack.

Example 4.18. Usage of assertContains()

<?php

25

Writing Tests for PHPUnNit

cl ass Contai nsTest extends PHPUnit_Franewor k_Test Case

{
public function testFail ure()
{
$t hi s- >assert Contai ns(' baz', 'foobar');
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) ContainsTest::testFailure
Fai |l ed asserting that 'foobar' contains "baz".

/ honme/ sb/ Cont ai nsTest . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit ContainsTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) ContainsTest::testFailure
Fai |l ed asserting that 'foobar' contains "baz".

/ honme/ sb/ Cont ai nsTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Cont ai nsOnl y()

assertContai nsOnl y(string $type, Ilterator|array $haystack[, bool ean
$i sNativeType = NULL, string $nessage = ''])

Reports an error identified by $nmessage if $hayst ack does not contain only variables of type
$t ype.

$i sNat i veType isaflag used to indicate whether $t ype isanative PHP type or not.
assert Not Cont ai nsOnl y() istheinverse of this assertion and takes the same arguments.

assert Attri buteContai nsOnl y() and assert Attri but eNot Contai nsOnl y() are
convenience wrappers that use apubl i ¢, prot ect ed, or pri vat e attribute of a class or object
as the haystack.

Example 4.19. Usage of assertContainsOnly()

<?php
cl ass Contai nsOnl yTest extends PHPUnit _Franmewor k_Test Case
{

26

Writing Tests for PHPUnNit

public function testFailure()

{
}

$t hi s->assert Contai nsOnly('string', array('1', '2', 3))

PHPUnit 3.7.0 by Sebastian Bergnmann.
=

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) ContainsOnlyTest::testFailure
Fai | ed asserting that Array (
0="'1
1="'2
2 => 3
) contains only val ues of type "string".

/ hone/ sb/ Cont ai nsOnl yTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.phpunit Contai nsOnl yTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) ContainsOnlyTest::testFailure
Fai | ed asserting that Array (
0="'1
1="'2
2 => 3
) contains only values of type "string".

/ hone/ sb/ Cont ai nsOnl yTest . php: 6
FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.

assert Cont ai nsOnl yl nst ancesO ()

assert Cont ai nsOnl yl nstancesOf (string $classnane, Traversable|array
$hayst ack[, string $nessage = ''])

Reports an error identified by $nmessage if $hayst ack does not contain only instances of class
$cl assnane.

Example 4.20. Usage of assertContainsOnlyl nstancesOf()

<?php
cl ass Contai nsOnl yl nstancesOf Test ext ends PHPUni t _Franewor k_Test Case

{

public function testFailure()

{

27

Writing Tests for PHPUnNit

$t hi s- >assert Cont ai nsOnl yl nstancesO (' Foo', array(new Foo(), new Bar(), new Foo(

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) ContainsOnl yl nstancesOf Test: :testFailure
Fai |l ed asserting that Array ([0]=> Bar Object(...)) is an instance of class "Foo".

/ home/ sb/ Cont ai nsOnl yl nst ancesOf Test . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit Contai nsOnlyl nstancesO Test
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) Contai nsOnl yl nstancesOf Test: :testFailure
Fai |l ed asserting that Array ([0]=> Bar Object(...)) is an instance of class "Foo".

/ home/ sb/ Cont ai nsOnl yl nst ancesOf Test . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Count ()

assert Count ($expect edCount, $haystack[, string $nessage = ''])

Reports an error identified by $nessage if the number of elementsin $hayst ack is not $ex-
pect edCount .

assert Not Count () istheinverse of this assertion and takes the same arguments.

Example 4.21. Usage of assertCount()

<?php
cl ass Count Test extends PHPUnit_Franewor k_Test Case
{

public function testFailure()

{

$t hi s- >assert Count (0, array('foo'));

}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.

F

28

Writing Tests for PHPUnNit

Time: 0 seconds, Menory: 4.75M
There was 1 failure:

1) CountTest::testFailure
Fai |l ed asserting that actual size 1 natches expected size O.

/ home/ sb/ Count Test . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit Count Test
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Tine: 0 seconds, Menory: 4.75M

There was 1 failure:

1) CountTest::testFailure
Fai l ed asserting that actual size 1 natches expected size O.

/ home/ sb/ Count Test . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Enpty()

assert Enpty(m xed $actual [, string $nmessage = ''])
Reports an error identified by $message if $act ual isnot empty.
assert Not Enpt y() istheinverse of this assertion and takes the same arguments.

assertAttri buteEnpty() and assert Attri but eNot Enpt y() are convenience wrap-
persthat can be appliedto apubl i ¢, pr ot ect ed, or pri vat e attribute of a class or object.

Example 4.22. Usage of assertEmpty()

<?php
cl ass EnptyTest extends PHPUnit_Franewor k_Test Case
{

public function testFailure()

{
}

$t hi s- >assert Enpty(array('foo'));

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Tinme: 0 seconds, Menory: 4.75M
There was 1 failure:

1) EnptyTest::testFailure
Fai |l ed asserting that an array is enpty.

29

Writing Tests for PHPUnNit

/ home/ sb/ Enpt yTest . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit EnptyTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Tine: 0 seconds, Menory: 4.75M

There was 1 failure:

1) EnptyTest::testFailure
Fai |l ed asserting that an array is enpty.

/ home/ sb/ Enpt yTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Equal XMLSt ruct ure()

assert Equal XM_St r uct ur e(DOVEI enent $expect edEl enent, DOMVEI enent $ac-
tual El ement[, bool ean $checkAttributes = FALSE, string $nessage =

1)

Reports an error identified by $message if the XML Structure of the DOMElement in $ac-
t ual El ement isnot equal to the XML structure of the DOMElement in $expect edEl enent .

Example 4.23. Usage of assertEqual XML Structure()

<?php
cl ass Equal XMLSt ruct ureTest extends PHPUnit _Framewor k_Test Case
{
public function testFailureWthDifferentNodeNanes()
{
$expect ed = new DOVEI enent (' foo');
$actual = new DQVEl enent (' bar');
$t hi s- >assert Equal XM_St ruct ur e($expect ed, $actual);
}
public function testFailureWthDifferentNodeAttributes()
{
$expect ed = new DOVDocumnent ;
$expect ed- >l oadXM_(' <f oo bar="true" />");
$actual = new DOVDocunent ;
$act ual - >l oadXM_(' <f oo/ >');
$t hi s- >assert Equal XM_St r uct ur e(
$expect ed->first Child, $actual->firstChild, TRUE
)
}
public function testFailureWthDifferentChildrenCount()
{

$expect ed = new DOVDocumnent ;
$expect ed- >l oadXM_(' <f oo><bar/ ><bar/ ><bar/ ></f 00>") ;

$actual = new DOVDocunent ;
$act ual - >l oadXM_(' <f oo><bar/ ></fo00>');

30

Writing Tests for PHPUnNit

$t hi s- >assert Equal XMLSt ruct ur e(
$expect ed->first Child, $actual->firstChild
IE
}

public function testFailureWthDifferentChildren()
{

$expect ed = new DOVDocument ;
$expect ed- >l oadXM_(' <f oo><bar/ ><bar/ ><bar/ ></fo00>");

$act ual = new DOVDocunent ;
$act ual - >l oadXM_(' <f oo><baz/ ><baz/ ><baz/ ></f 00>');

$t hi s- >assert Equal XMLSt ruct ur e(
$expected->firstChild, $actual->firstChild

)

PHPUnit 3.7.0 by Sebastian Bergmann.
FFFF

Time: 0 seconds, Menory: 5.75M
There were 4 failures:

1) Equal XM_Struct ureTest::testFailureWthbDifferent NodeNanmes
Fai |l ed asserting that two strings are equal .

--- Expected

+++ Act ual

@ @@
-'foo'
+' bar'

/ home/ sb/ Equal XMLSt r uct ur eTest . php: 9

2) Equal XMLStructureTest::testFailureWthbDifferent NodeAttri butes
Nunmber of attributes on node "foo" does not natch
Fai |l ed asserting that 0 matches expected 1.

/ home/ sb/ Equal XMLSt r uct ur eTest . php: 22

3) Equal XMLStructureTest::testFailureWthDifferentChildrenCount
Nurmber of child nodes of "foo" differs
Fai |l ed asserting that 1 matches expected 3.

/ hone/ sb/ Equal XM_St r uct ur eTest . php: 35

4) Equal XM_StructureTest::testFailureWthbDifferentChildren
Fai | ed asserting that two strings are equal .

--- Expected

+++ Act ual

@ @@
- ' bar’
+' baz'

/ hone/ sb/ Equal XM_St r uct ur eTest . php: 48

FAI LURES!
Tests: 4, Assertions: 8, Failures: 4.phpunit Equal XMLStructureTest

31

Writing Tests for PHPUnNit

PHPUnit 3.7.0 by Sebastian Bergmann.
FFFF

Time: 0 seconds, Menory: 5.75M
There were 4 failures:

1) Equal XM_StructureTest::testFailureWthbDifferent NodeNanmes
Fai l ed asserting that two strings are equal .

--- Expected

+++ Act ual

@ @@
-'foo'
+' bar'

/ home/ sb/ Equal XMLSt r uct ur eTest . php: 9

2) Equal XMLStructureTest::testFailureWthbDifferent NodeAttri butes
Nunmber of attributes on node "foo" does not natch
Fai |l ed asserting that 0 matches expected 1.

/ home/ sb/ Equal XMLSt r uct ur eTest . php: 22

3) Equal XMLStructureTest::testFailureWthDifferentChildrenCount
Nurmber of child nodes of "foo" differs
Fai |l ed asserting that 1 matches expected 3.

/ hone/ sb/ Equal XM_St r uct ur eTest . php: 35

4) Equal XM_StructureTest::testFailureWthDifferentChildren
Fai | ed asserting that two strings are equal .

--- Expected

+++ Act ual

@@ @@
- " bar’
+' baz'

/ hone/ sb/ Equal XM_St r uct ur eTest . php: 48

FAI LURES
Tests: 4, Assertions: 8, Failures: 4.

assert Equal s()

assert Equal s(m xed $expected, nixed $actual [, string $nmessage = "''])

Reports an error identified by $nmessage if the two variables $expect ed and $act ual are not
equal.

assert Not Equal s() istheinverse of this assertion and takes the same arguments.

assert Attri but eEqual s() andassert Attri but eNot Equal s() areconveniencewrap-
persthat useapubl i c, prot ect ed, or pri vat e attribute of aclass or object asthe actual value.

Example 4.24. Usage of assertEquals()

<?php
cl ass Equal sTest extends PHPUnit_Franmewor k_Test Case

{

public function testFailure()

{
$t hi s- >assert Equal s(1, 0);

32

Writing Tests for PHPUnNit

}
public function testFail ure2()
{
$t hi s- >assert Equal s(' bar', 'baz');
}
public function testFail ure3()
{
$t hi s- >assert Equal s("f oo\ nbar\ nbaz\ n"
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
FFF

Time: 0 seconds, Menory: 5.25M
There were 3 failures:

1) Equal sTest::testFailure
Fai |l ed asserting that 0 matches expected 1.

/ home/ sb/ Equal sTest . php: 6

2) Equal sTest: :testFailure2

Fai | ed asserting that two strings are equal .
--- Expected

+++ Actua

@@ @@

- ' bar'

+' baz'

/ home/ sb/ Equal sTest . php: 11

3) Equal sTest: :testFailure3

Fai |l ed asserting that two strings are equal .
--- Expected
+++ Actua

@@ @@

'foo
- bar
+bah

baz

/ home/ sb/ Equal sTest . php: 16

FAI LURES

"f oo\ nbah\ nbaz\ n")

Tests: 3, Assertions: 3, Failures: 3.phpunit Equal sTest

PHPUnit 3.7.0 by Sebastian Bergmann.
FFF

Tinme: 0 seconds, Menory: 5.25M
There were 3 failures:

1) Equal sTest::testFailure
Fai |l ed asserting that 0 matches expected 1.

33

Writing Tests for PHPUnNit

/ home/ sb/ Equal sTest . php: 6

2) Equal sTest: :testFailure2

Fai |l ed asserting that two strings are equal .
--- Expected

+++ Act ual

@ @@
- " bar’
+' baz'

/ home/ sb/ Equal sTest . php: 11

3) Equal sTest: :testFailure3

Fai l ed asserting that two strings are equal .
--- Expected

+++ Act ual

@ @@
'foo
- bar
+bah
baz

/ home/ sb/ Equal sTest . php: 16

FAI LURES
Tests: 3, Assertions: 3, Failures: 3.

More specialized comparisons are used for specific argument types for $expect ed and $act ual ,
see below.

assert Equal s(fl oat $expected, float $actual[, string $message = ,
float $delta = 0])

Reportsan error identified by $Smessage if thetwo floats $expect ed and $act ual arenot within
$del t a of each other.

Please read "What Every Computer Scientist Should Know About Floating-Point Arithmetic [http://
docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html]" to understand why $del t a isnecces-
sary.

Example 4.25. Usage of assertEquals() with floats

<?php
cl ass Equal sTest extends PHPUnit_Franmewor k_Test Case
{
public function testSuccess()
{
$thi s->assert Equal s(1.0, 1.1, '', 0.2);
}
public function testFailure()
{
$t hi s- >assert Equal s(1.0, 1.1);
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.

.F

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Writing Tests for PHPUnNit

Time: 0 seconds, Menory: 5.75M
There was 1 failure:

1) Equal sTest::testFailure
Fai l ed asserting that 1.1 matches expected 1.0.

/ home/ sb/ Equal sTest . php: 11

FAI LURES!

Tests: 2, Assertions: 2, Failures: 1.phpunit Equal sTest
PHPUnit 3.7.0 by Sebastian Bergmann.

.F

Time: 0 seconds, Menory: 5.75M

There was 1 failure:

1) Equal sTest::testFailure
Fai l ed asserting that 1.1 matches expected 1.0.

/ home/ sb/ Equal sTest . php: 11

FAI LURES
Tests: 2, Assertions: 2, Failures: 1.

assert Equal s(DOVDocunent $expected, DOVDocunent S$actual[, string
$nmessage = ''])

Reportsan error identified by $nessage if the uncommented canonical form of the XML documents
represented by the two DOMDocument objects $expect ed and $act ual arenot equal.

Example 4.26. Usage of assertEquals() with DOM Document objects

<?php
cl ass Equal sTest extends PHPUnit_Franmewor k_Test Case
{
public function testFailure()
{
$expect ed = new DOVDocunent
$expect ed- >l oadXM_(' <f oo><bar/ ></fo0>');
$actual = new DOVDocunent
$act ual - >l oadXM_(' <bar ><f 0o/ ></ bar >') ;
$t hi s- >assert Equal s($expect ed, $actual)
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Equal sTest::testFailure

Fai |l ed asserting that two DOM docunments are equal
--- Expected

35

Writing Tests for PHPUnNit

+++ Actua
@ @@
<?xm version="1.0"7?>

- <f oo>

- <bar/>

-</foo>

+<bar >

+ <fool>

+</ bar >

/ home/ sb/ Equal sTest . php: 12

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.phpunit Equal sTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Equal sTest::testFailure
Fai |l ed asserting that two DOM docunents are equal
--- Expected

+++ Act ual

@@ @@

<?xm version="1.0"?>

- <f 00>

- <bar/>

-</foo>

+<bar >

+ <fool>

+</ bar >

/ home/ sb/ Equal sTest . php: 12

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assert Equal s(obj ect $expected, object $actual[, string $nessage =

1)

Reportsan error identified by $Sressage if thetwo objects $expect ed and $act ual do not have
equal attribute values.

Example 4.27. Usage of assertEquals() with objects

<?php
cl ass Equal sTest extends PHPUnit_Franmewor k_Test Case
{
public function testFailure()
{
$expected = new stdd ass
$expect ed- >f oo = ' f o0’
$expect ed- >bar = 'bar';
$actual = new stdd ass
$actual ->foo = 'bar';
$act ual - >baz = 'bar';
$t hi s- >assert Equal s($expect ed, $actual)
}

36

Writing Tests for PHPUnNit

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) Equal sTest::testFailure

Fai |l ed asserting that two objects are equal .
--- Expected

+++ Act ual

@@ @@

stdCd ass bject (

- 'foo' => 'foo

- "bar' => 'bar'

+ 'foo' => 'bar'

+ "baz' => 'bar'

)

/ home/ sb/ Equal sTest . php: 14

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.phpunit Equal sTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F
Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) Equal sTest::testFailure

Fai |l ed asserting that two objects are equal .
--- Expected

+++ Actua

@@ @@

stdCd ass bject (

- "foo' => 'foo

- "bar' => 'bar'

+ 'foo' => 'bar'

+ "baz' => 'bar'

)

/ home/ sb/ Equal sTest . php: 14

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assert Equal s(array $expected, array $actual [, string $nmessage = "''])

Reportsan error identified by $nessage if thetwo arrays$expect ed and $act ual arenot equal.
Example 4.28. Usage of assertEquals() with arrays

<?php
cl ass Equal sTest extends PHPUnit_Franmewor k_Test Case

{

public function testFailure()

37

Writing Tests for PHPUnNit

$t hi s- >assert Equal s(array('a', "b', 'c'), array('a',

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) Equal sTest::testFailure
Fai |l ed asserting that two arrays are equal.

--- Expected
+++ Act ual
@@ @@
Array (

0=>"a
- 1=>"'p
- 2 =>"'c
+ 1=>"c
+ 2 = 'd'
)

/ hone/ sb/ Equal sTest . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit Equal sTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 5.25M

There was 1 failure:

1) Equal sTest::testFailure
Fai |l ed asserting that two arrays are equal.

--- Expected
+++ Act ual
@@ @@
Array (

0=>"a
- 1=>"'p
- 2 =>"'c
+ 1=>"'c
+ 2 = 'd'
)

/ hone/ sb/ Equal sTest . php: 6

FAl LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Fal se()

assert Fal se(bool $condition[, string $nessage = ''])

Reports an error identified by $nmessage if $condi ti on is TRUE.

38

Writing Tests for PHPUnNit

Example 4.29. Usage of assertFalse()

<?php
cl ass Fal seTest extends PHPUnit_Franewor k_Test Case

{

public function testFailure()

{
}

$t hi s- >assert Fal se(TRUE)

PHPUnit 3.7.0 by Sebastian Ber gnann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Fal seTest::testFailure
Fai |l ed asserting that true is false.

/ hone/ sb/ Fal seTest . php: 6

FAI LURES

Tests: 1, Assertions: 1, Failures: 1.phpunit Fal seTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) Fal seTest::testFailure
Fai |l ed asserting that true is false.

/ hone/ sb/ Fal seTest . php: 6
FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.

assert Fi | eEqual s()

assertFil eEqual s(string $expected, string $actual[, string $nessage

=)

Reportsan error identified by $message if thefile specified by $expect ed doesnot have the same
contents as the file specified by $act ual .

assert Fi | eNot Equal s() istheinverse of this assertion and takes the same arguments.

Example 4.30. Usage of assertFileEquals()

<?php
cl ass Fil eEqual sTest extends PHPUnit_Franmewor k_Test Case
{

public function testFailure()

{

39

Writing Tests for PHPUnNit

$t hi s->assert Fi | eEqual s('/ hone/ sb/ expected', '/home/shb/actual"')

PHPUnit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 5.25M

There was 1 failure:

1) FileEqual sTest::testFailure

Fai |l ed asserting that two strings are equal.
--- Expected

+++ Actua

@@ @@
-' expect ed
+' actua

/ hone/ sb/ Fi | eEqual sTest . php: 6

FAI LURES!

Tests: 1, Assertions: 3, Failures: 1.phpunit Fil eEqual sTest
PHPUNit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 5.25M

There was 1 failure:

1) FileEqual sTest::testFailure

Fai |l ed asserting that two strings are equal.

--- Expected

+++ Act ua

@@ @@
-' expect ed
+' actua

/ hone/ sb/ Fi | eEqual sTest . php: 6

FAI LURES
Tests: 1, Assertions: 3, Failures: 1.

assert Fi | eExi sts()

assertFil eExists(string $filenanme[, string $nessage = ''])
Reports an error identified by $nessage if the file specified by $f i | ename does not exist.

assert Fi | eNot Exi st s() istheinverse of this assertion and takes the same arguments.

Example 4.31. Usage of assertFileExists()

<?php
cl ass Fil eExi stsTest extends PHPUnit_Franmewor k_Test Case

{

40

Writing Tests for PHPUnNit

public function testFailure()

{
}

$t hi s->assertFi |l eExi sts('/path/to/file');

PHPUnit 3.7.0 by Sebastian Bergmann.
=

Time: 0 seconds, Menory: 4.75M
There was 1 failure:

1) FileExistsTest::testFailure
Fail ed asserting that file "/path/to/file" exists.

/ hone/ sb/ Fi | eExi st sTest. php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit Fil eExistsTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 4.75M

There was 1 failure:

1) FileExistsTest::testFailure
Fail ed asserting that file "/path/to/file" exists.

/ hone/ sb/ Fi | eExi st sTest. php: 6

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assert G eat er Than()

assert G eater Than(m xed $expected, m xed $actual [, string $nmessage

=)

Reports an error identified by $nessage if the value of $act ual is not greater than the value of
$expect ed.

assert Attri but eG eat er Than() isaconveniencewrapper that usesapubl i c, pr ot ect -
ed, or pri vat e attribute of aclass or object as the actual value.

Example 4.32. Usage of assertGreater Than()

<?php
cl ass GreaterThanTest extends PHPUnit_Franmework Test Case
{

public function testFailure()

{

$t hi s- >assert Greater Than(2, 1);

}
}
?>

41

Writing Tests for PHPUnNit

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) G eaterThanTest::testFailure
Fail ed asserting that 1 is greater than 2.

/ hone/ sb/ Gr eat er ThanTest . php: 6

FAl LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit G eaterThanTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) G eaterThanTest::testFailure
Fail ed asserting that 1 is greater than 2.

/ hone/ sb/ Gr eat er ThanTest . php: 6

FAl LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert G eat er ThanO Equal ()

assert G eat er ThanOr Equal (m xed $expected, m xed S$actual[, string
$message = ''])

Reports an error identified by $Snmessage if the value of $act ual is not greater than or equal to
the value of $expect ed.

assert Attri but eG eat er ThanOr Equal () is aconvenience wrapper that usesapubl i c,
pr ot ect ed, or pri vat e attribute of a class or object asthe actual value.

Example 4.33. Usage of assertGreater ThanOr Equal()

<?php
cl ass Great ThanOr Equal Test ext ends PHPUni t _Fr anmewor k_Test Case
{

public function testFailure()

{

$t hi s- >assert Great er ThanOr Equal (2, 1);

}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.25M

42

Writing Tests for PHPUnNit

There was 1 failure:

1) Great ThanOr Equal Test: :testFailure
Fail ed asserting that 1 is equal to 2 or is greater than 2.

/ home/ sb/ G- eat er ThanOr Equal Test . php: 6

FAI LURES!

Tests: 1, Assertions: 2, Failures: 1.phpunit G eaterThanO Equal Test
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 5.25M

There was 1 failure:

1) Great ThanOr Equal Test: :testFailure
Fail ed asserting that 1 is equal to 2 or is greater than 2.

/ home/ sb/ G- eat er ThanOr Equal Test . php: 6

FAI LURES!
Tests: 1, Assertions: 2, Failures: 1.

assertl nstanceO ()

assertlnstanceO ($expected, $actual [, $nessage = ''])

Reports an error identified by $nmessage if $act ual isnot an instance of $expect ed.

assert Not I nst anceO () istheinverse of this assertion and takes the same arguments.
assertAttributel nstanceO () andassert Attri but eNot | nstanceO () areconve-

nience wrappers that can be applied to a publ i ¢, prot ect ed, or pri vat e attribute of a class
or object.

Example 4.34. Usage of assertlnstanceOf()

<?php
cl ass InstanceO Test extends PHPUnit_Franewor k_Test Case
{
public function testFailure()
{
$t hi s->assert |l nstanceOX (' Runti neException', new Exception);
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) InstanceO Test::testFailure
Fai |l ed asserting that Exception Object (...) is an instance of class "Runti neException".

43

Writing Tests for PHPUnNit

/ home/ sb/ I nst anceOf Test . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit |nstanceC Test
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) InstanceO Test::testFailure
Fai | ed asserting that Exception Object (...) is an instance of class "Runti neException".

/ home/ sb/ I nst anceOf Test . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertl nternal Type()

assertlnternal Type($expected, $actual [, $nessage = ''])

Reports an error identified by $nessage if $act ual isnot of the $expect ed type.

assert Not I nt er nal Type() istheinverse of this assertion and takes the same arguments.
assertAttri butel nternal Type() and assert Attri but eNot I nt ernal Type() are

convenience wrappers that can be applied to apubl i c, pr ot ect ed, or pri vat e attribute of a
class or object.

Example 4.35. Usage of assertinternal Type()

<?php
cl ass Internal TypeTest extends PHPUnit_Franewor k_Test Case
{

public function testFailure()

{

$t hi s->assert|Internal Type('string', 42);

}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Internal TypeTest::testFailure
Fail ed asserting that 42 is of type "string".

/ home/ sb/ | nt er nal TypeTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.phpunit Internal TypeTest

Writing Tests for PHPUnNit

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Internal TypeTest::testFailure
Fail ed asserting that 42 is of type "string".

/ home/ sb/ | nt er nal TypeTest . php: 6

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assertJsonFi | eEqual sJsonFi | e()

assertJsonFi |l eEqual sJsonFi |l e(m xed $expectedFile, mxed $actual-
File[, string $nessage = ''])

Reports an error identified by $message if the value of $act ual Fi | e does not match the value
of $expect edFi | e.

Example 4.36. Usage of assertJsonFileEqualslsonFile()

<?php
cl ass JsonFi |l eEqual sJsonFi | eTest extends PHPUnit_Franewor k_Test Case
{

public function testFail ure()

{

$t hi s- >assert JsonFi | eEqual sJsonFi | g(
"path/to/fixture/file', 'path/to/actual/file');

}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) JsonFil eEqual sJsonFile::testFailure
Fail ed asserting that '{"Mascott":"Tux"}' matches JSON string "["Mascott", "Tux", "OS"

/ home/ sb/ JsonFi | eEqual sJsonFi | eTest. php: 5

FAI LURES!

Tests: 1, Assertions: 3, Failures: 1.phpunit JsonFil eEqual sJsonFil eTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) JsonFil eEqual sJsonFile::testFailure

45

Writing Tests for PHPUnNit

Fai |l ed asserting that '{"Mascott":"Tux"}' matches JSON string "["Mascott", "Tux", "OS",
/ home/ sb/ JsonFi | eEqual sJsonFi | eTest. php: 5

FAI LURES!
Tests: 1, Assertions: 3, Failures: 1.

assertJsonStri ngEqual sJsonFi |l e()

assertJsonStri ngEqual sJsonFi | e(m xed $expectedFile, nm xed $actual J-
son[, string $message = "''])

Reports an error identified by $nessage if the value of $act ual Json does not match the value
of $expect edFi | e.

Example 4.37. Usage of assertJsonStringEqualsJsonFile()

<?php
cl ass JsonStringEqual sJsonFil eTest extends PHPUnit _Franmewor k_Test Case
{

public function testFailure()

{

$t hi s- >assertJsonStri ngEqual sJsonFi | e(
"path/to/fixture/file', json_encode(array("Mscott" => "ux"));

}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) JsonStringEqual sJsonFile::testFailure
Fai |l ed asserting that '{"Mascott":"ux"}' matches JSON string "{"Mascott":"Tux"}".

/ home/ sb/ JsonSt ri ngEqual sJsonFi | eTest . php: 5

FAI LURES!

Tests: 1, Assertions: 3, Failures: 1.phpunit JsonStringEqual sJsonFil eTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) JsonStringEqual sJsonFile::testFailure
Fai |l ed asserting that '{"Mascott":"ux"}' matches JSON string "{"Mascott":"Tux"}".

/ home/ sb/ JsonSt ri ngEqual sJsonFi | eTest . php: 5

FAI LURES!
Tests: 1, Assertions: 3, Failures: 1.

assertJsonStri ngeEqual sJsonStri ng()

46

Writing Tests for PHPUnNit

assertJsonStri ngequal sJsonString(m xed $expectedJson, m xed $act u-
al Json[, string $nessage = ''])

Reports an error identified by $nessage if the value of $act ual Json does not match the value
of $expect edJson.

Example 4.38. Usage of assertJsonStringEqualsisonString()

<?php
cl ass JsonStringEqual sJsonStringTest extends PHPUnit_Franmewor k_Test Case

{

public function testFailure()

{

$t hi s- >assertJsonStri ngEqual sJsonStri ng(
j son_encode(array("Mascott" => "Tux"), json_encode(array("Mascott" =>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) JsonStringEqual sJsonStringTest::testFailure
Fai |l ed asserting that two objects are equal .
--- Expected

+++ Act ual

@@ @@

stdC ass Obj ect (

= ‘Mascott' => 'Tux'

T ‘Mascott' => 'ux'

)

/ home/ sb/ JsonSt ri ngEqual sJsonStri ngTest. php: 5

FAI LURES!
Tests: 1, Assertions: 3, Failures: 1.phpunit JsonStringEqual sJsonStringTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) JsonStringEqual sJsonStringTest::testFailure
Fai |l ed asserting that two objects are equal .
--- Expected

+++ Act ual

@@ @@

stdC ass Object (

= ‘Mascott' => 'Tux'

T ‘Mascott' => 'ux'

)

/ home/ sb/ JsonSt ri ngEqual sJsonStri ngTest. php: 5

FAI LURES!

47

"ux));

Writing Tests for PHPUnNit

Tests: 1, Assertions: 3, Failures: 1.

assertLessThan()

assertLessThan(m xed $expected, m xed $actual[, string $nessage =

1)

Reports an error identified by $nessage if the value of $act ual is not less than the value of
$expect ed.

assert Attri but eLessThan() isa convenience wrapper that usesapubl i c, prot ect ed,
or pri vat e attribute of aclass or object as the actual value.

Example 4.39. Usage of assertL essThan()

<?php
cl ass LessThanTest extends PHPUnit_Franewor k_Test Case

{

public function testFailure()

{
}

$t hi s- >assert LessThan(1, 2);

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) LessThanTest::testFailure
Fai |l ed asserting that 2 is |less than 1.

/ honme/ sb/ LessThanTest . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit LessThanTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) LessThanTest::testFailure
Fai |l ed asserting that 2 is |less than 1.

/ honme/ sb/ LessThanTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert LessThanOr Equal ()

assert LessThanOr Equal (m xed $expected, mixed $actual [, string $nes-
sage = "''])

48

Writing Tests for PHPUnNit

Reports an error identified by $nessage if the value of $act ual isnot less than or equal to the
value of $expect ed.

assert Attri but eLessThanO Equal () isaconveniencewrapper that usesapubl i ¢, pr o-
t ect ed, or pri vat e attribute of aclass or object as the actual value.

Example 4.40. Usage of assertL essThanOrEqual()

<?php
cl ass LessThanOr Equal Test extends PHPUnit_Franewor k_Test Case

{

public function testFailure()

{
}

$t hi s- >assert LessThanOr Equal (1, 2);

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) LessThanOr Equal Test::testFailure
Fai |l ed asserting that 2 is equal to 1 or is less than 1.

/ hone/ sb/ LessThanOr Equal Test . php: 6

FAI LURES!

Tests: 1, Assertions: 2, Failures: 1.phpunit LessThanO Equal Test
PHPUnit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 5.25M

There was 1 failure:

1) LessThanOrEqual Test::testFailure
Fai |l ed asserting that 2 is equal to 1 or is less than 1.

/ hone/ sb/ LessThanOr Equal Test . php: 6

FAl LURES!
Tests: 1, Assertions: 2, Failures: 1.

assertNul | ()

assertNul | (m xed $variabl e[, string $nessage = ''])
Reports an error identified by $message if $vari abl e isnot NULL.

assert Not Nul | () istheinverse of this assertion and takes the same arguments.

Example 4.41. Usage of assertNull()

<?php

49

Writing Tests for PHPUnNit

class Nul | Test extends PHPUnit_Franewor k_Test Case

{
public function testFailure()
{
$thi s->assertNul | (' foo');
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Null Test::testFailure
Fai |l ed asserting that 'foo' is null.

/ honme/ sb/ Not Nul | Test . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit NotNul | Test
PHPUnit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) Null Test::testFailure
Fai |l ed asserting that 'foo' is null.

/ honme/ sb/ Not Nul | Test . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Obj ect HasAttri but e()

assert Qbj ect HasAttribute(string $attributeName, object $object],
string $nessage = ''])

Reports an error identified by $message if $obj ect - >at t ri but eNane does not exist.

assert Cbj ect Not HasAtt ri but e() istheinverse of this assertion and takes the same argu-
ments.

Example 4.42. Usage of assertObjectHasAttribute()

<?php
cl ass Obj ect HasAttri buteTest extends PHPUnit_Franewor k_Test Case
{
public function testFailure()
{
$t hi s- >assert Obj ect HasAttri bute(' foo', new stdd ass);
}

50

Writing Tests for PHPUnNit

?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Tine: 0 seconds, Menory: 4.75M
There was 1 failure:

1) Obj ect HasAttributeTest::testFailure
Fai |l ed asserting that object of class "stdd ass" has attribute "foo".

/ home/ sb/ Obj ect HasAt tri but eTest . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit ObjectHasAttributeTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 4.75M

There was 1 failure:

1) Obj ect HasAttributeTest::testFailure
Fai | ed asserting that object of class "stdd ass" has attribute "foo".

/ home/ sb/ Obj ect HasAt tri but eTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert RegExp()

assert RegExp(string $pattern, string $string[, string $nessage ='"'])

Reportsan error identified by $message if $st ri ng does not match the regular expression $pat -
tern.

assert Not RegExp() istheinverse of this assertion and takes the same arguments.

Example 4.43. Usage of assertRegExp()

<?php
cl ass RegExpTest extends PHPUnit_Framewor k_Test Case
{

public function testFail ure()

{

$t hi s- >assert RegExp('/foo/', 'bar');

}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M

51

Writing Tests for PHPUnNit

There was 1 failure:

1) RegExpTest::testFailure
Fai |l ed asserting that 'bar' natches PCRE pattern "/foo/".

/ hone/ sb/ RegExpTest . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit RegExpTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) RegExpTest::testFailure
Fai |l ed asserting that 'bar' natches PCRE pattern "/foo/".

/ hone/ sb/ RegExpTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Stri ngvat chesFor mat ()

assert StringMatchesFormat (string $format, string $string[, string
$nmessage = ''])

Reports an error identified by $nmessage if the $st r i ng does not match the $f or mat string.

assert St ri ngNot Mat chesFor mat () istheinverse of this assertion and takes the same argu-
ments.

Example 4.44. Usage of assertStringM atchesFor mat()

<?php
cl ass Stringhat chesFor mat Test ext ends PHPUni t _Franewor k_Test Case
{

public function testFailure()

{

$t hi s->assert Stri ngivat chesFormat (' %', 'foo');

}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) StringMatchesFormat Test::testFailure
Fail ed asserting that 'foo' matches PCRE pattern "/A[+-]?\d+$/s".

/ home/ sb/ St ri ngiat chesFor mat Test . php: 6

52

Writing Tests for PHPUnNit

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.phpunit StringMatchesFormat Test
PHPUnit 3.7.0 by Sebastian Bergmann.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) StringMWatchesFormat Test::testFailure
Fai |l ed asserting that 'foo' matches PCRE pattern "/~[+-]?2\d+$/s".

/ home/ sb/ St ri ngivat chesFor mat Test . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

The format string may contain the following placehol ders:

* %: Represents adirectory separator, for example/ on Linux.

* 9s: One or more of anything (character or white space) except the end of line character.

» U8: Zero or more of anything (character or white space) except the end of line character.

* 9%a: One or more of anything (character or white space) including the end of line character.
» 9\: Zero or more of anything (character or white space) including the end of line character.
» 9. Zero or more white space characters.

* % : A signed integer value, for example +3142, - 3142.

* %: An unsigned integer value, for example 123456.

» 9%x: One or more hexadecimal character. That is, charactersintherange0- 9,a-f, A- F.

* 96 : A floating point number, for example: 3. 142, - 3. 142, 3. 142E- 10, 3. 142e+10.

* 9¢: A single character of any sort.

assert StringMat chesFormat Fi | e()

assertStringMatchesFornatFile(string $formatFile, string $string[,
string $nmessage = ''])

Reportsan error identified by $nmessage if the$st r i ng does not match the contents of the $f or -
mat Fi | e.

assert St ri ngNot Mat chesFor mat Fi | e() istheinverse of this assertion and takes the same
arguments.

Example 4.45. Usage of assertStringM atchesFor matFile()

<?php
class StringhatchesFormat Fil eTest ext ends PHPUnit _Franewor k_Test Case
{

public function testFailure()

{

53

Writing Tests for PHPUnNit

$t hi s- >assert Stri ngiat chesFornat Fil e('/path/to/ expected.txt', 'foo');

PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) StringMatchesFormat Fil eTest::testFailure

Fail ed asserting that 'foo' matches PCRE pattern "/~[+-]?\d+
$/s".

/ home/ sb/ St ri ngivat chesFor nat Fi | eTest . php: 6

FAI LURES!

Tests: 1, Assertions: 2, Failures: 1.phpunit StringMatchesFormatFil eTest
PHPUNit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) StringMatchesFormat Fil eTest::testFailure

Fail ed asserting that 'foo' matches PCRE pattern "/~[+-]?\d+
$/s".

/ honme/ sb/ St ri ngivat chesFor nat Fi | eTest . php: 6

FAI LURES!

Tests: 1, Assertions: 2, Failures: 1.

assert Same()

assert Same(m xed $expected, m xed $actual [, string $nmessage = ''])

Reports an error identified by $mressage if the two variables $expect ed and $act ual do not
have the same type and value.

assert Not Sarme() istheinverse of this assertion and takes the same arguments.

assertAttributeSane() and assert Attri but eNot Sane() are convenience wrappers
that useapubl i c, pr ot ect ed, or pri vat e attribute of a class or object as the actual value.

Example 4.46. Usage of assertSame()

<?php
cl ass SaneTest extends PHPUnit_Franewor k_Test Case

{

public function testFailure()

{
}

$t hi s- >assert Sane(' 2204' , 2204);

Writing Tests for PHPUnNit

?>

PHPUnit 3.7.0 by Sebastian Bergmann.
=

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) SaneTest::testFailure
Fai |l ed asserting that 2204 is identical to '2204'.

/ hone/ sb/ SaneTest . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit SaneTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) SaneTest::testFailure
Fai |l ed asserting that 2204 is identical to '2204'.

/ hone/ sb/ SaneTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Same(obj ect $expected, object $actual [, string $nmessage = "''])

Reports an error identified by $mressage if the two variables $expect ed and $act ual do not
reference the same object.

Example 4.47. Usage of assertSame() with objects

<?php
cl ass SaneTest extends PHPUnit_ Franewor k Test Case
{
public function testFailure()
{
$t hi s- >assert Sanme(new stdd ass, new stdd ass)
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Tine: 0 seconds, Menory: 4.75M
There was 1 failure:

1) SameTest::testFailure
Fai l ed asserting that two variables reference the sane object.

55

Writing Tests for PHPUnNit

/ home/ sb/ SameTest . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit SaneTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Tine: 0 seconds, Menory: 4.75M

There was 1 failure:

1) SameTest::testFailure
Fai l ed asserting that two variables reference the sane object.

/ home/ sb/ SameTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Sel ect Count ()

assert Sel ect Count (array $sel ector, integer $count, mnixed $actual,
string $nmessage = '', boolean $isHnm = TRUE])

Reports an error identified by $Snessage if the CSS selector $sel ect or does not match $count
elementsin the DOMNode $act ual .

$count can be one of the following types:

* bool ean: Assertsfor presence of elements matching the selector (TRUE) or absence of elements
(FALSE).

* i nt eger : Asserts the count of elements.

» array: Assertsthat the count isin arange specified by using <, >, <=, and >= askeys.

Example 4.48. Usage of assertSelectCount()

<?php
cl ass Sel ect Count Test extends PHPUnit_Franmewor k_Test Case
{
protected function setUp()
{
$t hi s->xm = new DonDocunent ;
$t hi s- >xm - > oadXM_(' <f oo><bar/ ><bar/ ><bar/ ></f 00>');
}
public function testAbsenceFail ure()
{
$t hi s- >assert Sel ect Count (' foo bar', FALSE, $this->xm);
}
public function testPresenceFail ure()
{
$t hi s- >assert Sel ect Count (' foo baz', TRUE, $this->xm);
}
public function testExact CountFail ure()
{

56

Writing Tests for PHPUnNit

$t hi s- >assert Sel ect Count (' foo bar', 5, $this->xm);

}
public function testRangeFail ure()
{
$t hi s- >assert Sel ect Count (' foo bar', array('>'=>6, '<' =>8)
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
FFFF

Time: 0 seconds, Menory: 5.50M
There were 4 failures:

1) Sel ect Count Test: :test AbsenceFail ure
Fai |l ed asserting that true is fal se.

/ home/ sb/ Sel ect Count Test . php: 12

2) Sel ect Count Test: : test PresenceFail ure
Fai |l ed asserting that false is true.

/ home/ sb/ Sel ect Count Test . php: 17

3) Sel ect Count Test : : t est Exact Count Fai | ure
Fai |l ed asserting that 3 matches expected 5.

/ home/ sb/ Sel ect Count Test . php: 22

4) Sel ect Count Test: :t est RangeFai l ure
Fai |l ed asserting that false is true.

/ home/ sb/ Sel ect Count Test . php: 27

FAI LURES!

Tests: 4, Assertions: 4, Failures: 4.phpunit Sel ect Count Test
PHPUnit 3.7.0 by Sebastian Bergmann.

FFFF

Time: 0 seconds, Menory: 5.50M

There were 4 fail ures:

1) Sel ect Count Test: :test AbsenceFail ure
Fai |l ed asserting that true is fal se.

/ home/ sb/ Sel ect Count Test . php: 12

2) Sel ect Count Test: : test PresenceFail ure
Fai |l ed asserting that false is true.

/ home/ sb/ Sel ect Count Test . php: 17

3) Sel ect Count Test : : t est Exact Count Fai | ure
Fai |l ed asserting that 3 matches expected 5.

/ home/ sb/ Sel ect Count Test . php: 22

$t hi s->xml) ;

57

Writing Tests for PHPUnNit

4) Sel ect Count Test: :test RangeFail ure
Fai |l ed asserting that false is true.

/ home/ sb/ Sel ect Count Test . php: 27

FAI LURES
Tests: 4, Assertions: 4, Failures: 4.

assert Sel ect Equal s()

assert Sel ect Equal s(array $sel ector, string $content, integer $count,
m xed $actual [, string $nessage = '', boolean $isH M = TRUE])

Reports an error identified by $nessage if the CSS selector $sel ect or does not match $count
elementsin the DOMNode $act ual with the value $cont ent .

$count can be one of the following types:

» bool ean: Assertsfor presence of elements matching the selector (TRUE) or absence of elements
(FALSE).

i nt eger : Assertsthe count of elements.

» array: Assertsthat the count isin arange specified by using <, >, <=, and >= askeys.

Example 4.49. Usage of assertSelectEquals()

<?php
cl ass Sel ect Equal sTest extends PHPUnit _Franewor k_Test Case
{
protected function set Up()
{
$t hi s->xm = new DonDocunent ;
$t hi s- >xm - > oadXM_(' <f oo><bar >Baz</ bar ><bar >Baz</ bar ></ f 00>") ;
}
public function testAbsenceFail ure()
{
$t hi s- >assert Sel ect Equal s(' foo bar', 'Baz', FALSE, $this->xm);
}
public function testPresenceFail ure()
{
$t hi s- >assert Sel ect Equal s(' foo bar', 'Bat', TRUE, $this->xm)
}
public function testExact CountFail ure()
{
$t hi s- >assert Sel ect Equal s(' foo bar', 'Baz', 5, $this->xnm);
}
public function testRangeFail ure()
{
$t hi s- >assert Sel ect Equal s(' foo bar', 'Baz', array('> =>6, '< =>8), $this->xm);
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.

58

Writing Tests for PHPUnNit

FFFF
Time: 0 seconds, Menory: 5.50M
There were 4 failures:

1) Sel ect Equal sTest: :test AbsenceFail ure
Fai |l ed asserting that true is false.

/ home/ sb/ Sel ect Equal sTest . php: 12

2) Sel ect Equal sTest: :testPresenceFail ure
Fai |l ed asserting that false is true.

/ home/ sb/ Sel ect Equal sTest . php: 17

3) Sel ect Equal sTest: :t est Exact Count Fai |l ure
Fai |l ed asserting that 2 matches expected 5.

/ home/ sb/ Sel ect Equal sTest . php: 22

4) Sel ect Equal sTest: :test RangeFail ure
Fai |l ed asserting that false is true.

/ home/ sb/ Sel ect Equal sTest . php: 27

FAI LURES!

Tests: 4, Assertions: 4, Failures: 4.phpunit Sel ect Equal sTest
PHPUnit 3.7.0 by Sebastian Bergmann.

FFFF

Time: 0 seconds, Menory: 5.50M

There were 4 fail ures:

1) Sel ect Equal sTest: :test AbsenceFail ure
Fai |l ed asserting that true is false.

/ home/ sb/ Sel ect Equal sTest . php: 12

2) Sel ect Equal sTest: :testPresenceFail ure
Fai |l ed asserting that false is true.

/ home/ sb/ Sel ect Equal sTest . php: 17

3) Sel ect Equal sTest: :t est Exact Count Fai |l ure
Fai |l ed asserting that 2 matches expected 5.

/ home/ sb/ Sel ect Equal sTest . php: 22

4) Sel ect Equal sTest: :test RangeFail ure
Fai |l ed asserting that false is true.

/ home/ sb/ Sel ect Equal sTest . php: 27
FAI LURES!

Tests: 4, Assertions: 4, Failures: 4.

assert Sel ect RegExp()

assert Sel ect RegExp(array $sel ector, string $pattern, integer $count,
m xed $actual [, string $nessage = '', boolean $isH M = TRUE])

59

Writing Tests for PHPUnNit

Reports an error identified by $nessage if the CSS selector $sel ect or does not match $count
elementsin the DOMNode $act ual with avalue that matches $pat t er n.

$count can be one of the following types:

» bool ean: Assertsfor presence of elements matching the selector (TRUE) or absence of elements
(FALSE).

* i nt eger : Assertsthe count of elements.

e array: Assertsthat the count isin arange specified by using <, >, <=, and >= as keys.

Example 4.50. Usage of assertSelectRegEXp()

<?php
cl ass Sel ect RegExpTest extends PHPUnit _Franmewor k_Test Case
{
protected function set Up()
{
$t hi s->xm = new DonDocunent ;
$t hi s- >xm - > oadXM_(' <f oo><bar >Baz</ bar ><bar >Baz</ bar ></ f 00>") ;
}
public function testAbsenceFail ure()
{
$t hi s- >assert Sel ect RegExp(' foo bar', '/Ba.*/', FALSE, $this->xm);
}
public function testPresenceFail ure()
{
$t hi s- >assert Sel ect RegExp(' foo bar', '/B[oe]z]/', TRUE, $this->xm);
}
public function testExact CountFail ure()
{
$t hi s- >assert Sel ect RegExp(' foo bar', '/Ba.*/', 5, $this->xm);
}
public function testRangeFail ure()
{
$t hi s- >assert Sel ect RegExp(' foo bar', '/Ba.*/', array('> =>6, '<'=>8), $this->xn
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
FFFF

Time: 0 seconds, Menory: 5.50M
There were 4 failures:

1) Sel ect RegExpTest: :test AbsenceFail ure
Fai |l ed asserting that true is fal se.

/ home/ sb/ Sel ect RegExpTest . php: 12

2) Sel ect RegExpTest: :test PresenceFail ure
Fai |l ed asserting that false is true.

/ home/ sb/ Sel ect RegExpTest . php: 17

60

Writing Tests for PHPUnNit

3) Sel ect RegExpTest: :test Exact Count Fail ure
Fai |l ed asserting that 2 matches expected 5.

/ home/ sb/ Sel ect RegExpTest . php: 22

4) Sel ect RegExpTest: :test RangeFail ure
Fai |l ed asserting that false is true.

/ home/ sb/ Sel ect RegExpTest . php: 27

FAI LURES!

Tests: 4, Assertions: 4, Failures: 4.phpunit Sel ect RegExpTest
PHPUnit 3.7.0 by Sebastian Bergmann.

FFFF

Time: 0 seconds, Menory: 5.50M

There were 4 fail ures:

1) Sel ect RegExpTest: :test AbsenceFail ure
Fai |l ed asserting that true is fal se.

/ home/ sb/ Sel ect RegExpTest . php: 12

2) Sel ect RegExpTest: :test PresenceFail ure
Fai |l ed asserting that false is true.

/ home/ sb/ Sel ect RegExpTest . php: 17

3) Sel ect RegExpTest: :test Exact Count Fai l ure
Fai |l ed asserting that 2 matches expected 5.

/ home/ sb/ Sel ect RegExpTest . php: 22

4) Sel ect RegExpTest: :test RangeFail ure
Fai |l ed asserting that false is true.

/ home/ sb/ Sel ect RegExpTest . php: 27

FAI LURES!
Tests: 4, Assertions: 4, Failures: 4.

assert Stri ngEndsWt h()

assert StringEndsWth(string $suffix, string $string[, string $nes-
sage = "'])

Reports an error identified by $nmessage if the $st r i ng does not end with $suf fi x.

assert StringEndsNot Wt h() istheinverse of this assertion and takes the same arguments.

Example 4.51. Usage of assertStringendsWith()

<?php
class StringEndsWthTest extends PHPUnit_Franmewor k_Test Case
{
public function testFailure()
{
$this->assert StringEndsWth('suffix', 'foo');
}

61

Writing Tests for PHPUnNit

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 1 second, Menory: 5.00M
There was 1 failure:

1) StringEndsWthTest::testFailure
Fai |l ed asserting that 'foo’ ends with "suffix".

/ home/ sb/ Stri ngEndsW t hTest . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit StringEndsWthTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

F

Time: 1 second, Menory: 5.00M

There was 1 failure:

1) StringEndsWthTest::testFailure
Fai |l ed asserting that 'foo' ends with "suffix".

/ home/ sb/ Stri ngEndsW t hTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert StringEqual sFil e()

assert StringEqual sFil e(string $expectedFile, string $actual String[,
string $nessage = ''])

Reports an error identified by $nessage if the file specified by $expect edFi | e does not have
$act ual Stri ng asitscontents.

assert St ri ngNot Equal sFi | e() istheinverse of this assertion and takes the same arguments.

Example 4.52. Usage of assertStringEqualsFileg()

<?php
class StringEqual sFil eTest extends PHPUni t _Franmewor k_Test Case
{
public function testFailure()
{
$t hi s- >assert Stri ngequal sFi |l e('/ hone/ sb/ expected', 'actual');
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.

F

62

Writing Tests for PHPUnNit

Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) StringEqual sFileTest::testFailure

Fai |l ed asserting that two strings are equal .
--- Expected

+++ Act ual

@@ @@
-' expect ed

+" actual '

/ home/ sb/ St ri ngEqual sFi | eTest . php: 6

FAI LURES!

Tests: 1, Assertions: 2, Failures: 1.phpunit StringEqual sFil eTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 5.25M

There was 1 failure:

1) StringEqual sFileTest::testFailure

Fai l ed asserting that two strings are equal .

--- Expected
+++ Act ual

@@ @@

-' expect ed

+" actual'

/ home/ sb/ St ri ngEqual sFi | eTest . php: 6

FAI LURES!
Tests: 1, Assertions: 2, Failures: 1.

assertStringStartsWth()

assertStringStartsWth(string $prefix, string $string[, string $nes-
sage = ''])

Reports an error identified by $nessage if the $st r i ng does not start with $pr ef i x.

assert StringStartsNot Wt h() istheinverse of this assertion and takes the same arguments.

Example 4.53. Usage of assertStringStartswith()

<?php
class StringStartsWthTest extends PHPUni t _Franmewor k_Test Case
{

public function testFailure()

{

$t hi s->assertStringStartsWth('prefix', 'foo');

}
}
?>

63

Writing Tests for PHPUnNit

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) StringStartsWthTest::testFailure
Fai l ed asserting that 'foo' starts with "prefix".

/ home/ sb/ StringStartsWthTest. php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit StringStartsWthTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) StringStartsWthTest::testFailure
Fai l ed asserting that 'foo' starts with "prefix".

/ home/ sb/ StringStartsWthTest. php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Tag()

assertTag(array $matcher, string $actual[, string $nmessage = ,
bool ean $isH M = TRUE])

Reports an error identified by $message if $act ual isnot matched by the $nat cher .
$nmat cher isan associative array that specifies the match criteriafor the assertion:

i d: The node with the giveni d attribute must match the corresponsing value.

t ag: The node type must match the corresponding value.

e attri but es: The node's attributes must match the corresponsing valuesinthe $at t ri but es
associative array.

» cont ent : Thetext content must match the given value.
» par ent : The node's parent must match the $par ent associative array.

e chil d: At least one of the node's immediate children must meet the criteria described by the
$chi | d associative array.

» ancest or : At least one of the node's ancestors must meet the criteria described by the $ances-
t or associative array.

» descendant : At least one of the node's descendants must meet the criteriadescribed by the $de-
scendant associative array.

e chi | dr en: Associative array for counting children of a node.

64

Writing Tests for PHPUnit

» count : The number of matching children must be equa to this number.
¢ | ess_t han: The number of matching children must be less than this number.
» great er_t han: The number of matching children must be greater than this number.

« onl y: Anocther associative array consisting of the keysto use to match on the children, and only
matching children will be counted.

assert Not Tag() istheinverse of this assertion and takes the same arguments.
Example 4.54. Usage of assertTag()

<?php
/'l Matcher that asserts that there is an elenent with an id="ny_id".
$matcher = array('id =>"'ny_id);

/'l Matcher that asserts that there is a "span" tag.
$mat cher = array('tag’ => 'span');

/| Matcher that asserts that there is a "span" tag with the content
Il "Hello World".
$mat cher = array('tag' => 'span', 'content' => 'Hello Wirld');

/'l Matcher that asserts that there is a "span" tag with content matching the
/'l regul ar expression pattern.
$mat cher = array('tag' => 'span', 'content' => 'regexp:/Try P(HP]ython)/"');

/'l Matcher that asserts that there is a "span" with an "list" class attribute.
$mat cher = array(

‘tag' => 'span',

"attributes' => array('class' => "list')
IE

/'l Matcher that asserts that there is a "span" inside of a "div".
$mat cher = array(

‘tag' => 'span',

'"parent' => array('tag' => 'div')

)i

/'l Matcher that asserts that there is a "span" sonmewhere inside a "table".
$mat cher = array(

'tag' => 'span',

"ancestor' => array('tag' => 'table')

)

/'l Matcher that asserts that there is a "span" with at |east one "em child.
$mat cher = array(

‘tag' => 'span',

‘child" => array('tag’ => "enl)

IE

/'l Matcher that asserts that there is a "span" containing a (possibly nested)
/] "strong" tag.
$mat cher = array(

‘tag' => 'span’

'descendant' => array('tag' => 'strong')

)

/'l Matcher that asserts that there is a "span" containing 5-10 "em' tags as
/1 1 mediate children.
$mat cher = array(

‘tag' => ' span'

65

Writing Tests for PHPUnNit

‘children' => array(

"l ess_t han' = 11
‘greater_than' => 4
"only' => array('tag" => 'enl)

)
DK

$mat cher = array(

‘tag' = 'div',
'ancestor’ => array('tag' => 'ul"),
' parent’ => array(

‘tag’ =l

"attributes' => array('class' => "'enuni)

)

' descendant' => array(

‘tag' => 'span',
‘child => array(
"id = "nmy_test',

"content' => 'Hello World

$t hi s- >assert Tag($mat cher, $htnl);

$t hi s- >assert Tag($mat cher, $xm, '', FALSE)
?>

assert That ()

M ore complex assertions can beformulated using the PHPUni t _Fr amewor k_Const r ai nt class
es. They can beevaluated usingtheassert That () method. Example 4.55, “Usage of assertThat()”
shows how the | ogi cal Not () and equal To() constraints can be used to express the same as-
sertion asassert Not Equal s() .

assert That (m xed $val ue, PHPUni t _Framewor k_Constrai nt $constraint[,
$message = ''])

Reports an error identified by $message if the $val ue does not match the $const r ai nt .

Example 4.55. Usage of assertThat()

<?php
cl ass BiscuitTest extends PHPUnit_Framework_Test Case
{
public function testEqual s()
{
$theBi scuit = new Biscuit(' G nger")
$nyBi scuit = new Biscuit('G nger')
$t hi s- >assert That (
$t heBi scui t
$t hi s- >l ogi cal Not (
$t hi s- >equal To($nyBi scuit)
)
)
}

66

Writing Tests for PHPUnNit

}

?>

Table 4.3, “Constraints’ shows the available PHPUNni t _Fr amewor k_Const r ai nt classes.

Table4.3. Constraints

Constraint

Meaning

PHPUNi t _Franmewor k_Constrai nt _At -
tribute attribute(PHPUNnit_Frane-
wor k_Constraint $constraint,
$attri but eNane)

Constraint that applies another constraint to an
attribute of a class or an object.

PHPUni t _Framewor k_Constrai nt _
I sAnyt hi ng anyt hi ng()

Constraint that accepts any input value.

PHPUNi t _Fr amewor k_Constrai nt _
ArrayHasKey arrayHasKey(ni xed
$key)

Congtraint that asserts that the array it is evaluat-
ed for has agiven key.

PHPUNi t _Fr amewor k_Con-
straint_Traversabl eCont ai ns
cont ai ns(ni xed $val ue)

Constraint that asserts that the ar r ay or object
that implementsthel t er at or interfaceit is
evauated for contains a given value.

PHPUNi t _Franmewor k_Constrai nt _
Tr aver sabl eCont ai nsOnl y
contai nsOnl y(string $type)

Constraint that asserts that the ar r ay or ob-
ject that implementsthel t er at or interfaceit
is evaluated for contains only values of agiven

type.

PHPUni t _Framewor k_Constrai nt _
Traver sabl eCont ai nsOnl y

cont ai nsOnl yl nst ancesOf (string
$cl assnane)

Congtraint that asserts that the ar r ay or object
that implementsthel t er at or interfaceit is
evaluated for contains only instances of agiven
classname.

PHPUNi t _Fr amewor k_Constrai nt _
| sEqual equal To($val ue, $delta =
0, $maxDepth = 10)

Congtraint that checks if one valueis equal to
another.

PHPUNi t _Framewor k_
Constraint_Attribute

attri but eEqual To($at tri but eNane,
$val ue, $delta = 0, $maxDepth =
10)

Congtraint that checks if avalueisequal to an
attribute of a class or of an object.

PHPUNi t _Franmewor k_Constrai nt _
FileExists fileExists()

Constraint that checks if the file(name) that it is
evaluated for exists.

PHPUni t _Framewor k_Constrai nt _
Gr eat er Than great er Than(m xed
$val ue)

Constraint that asserts that the valueit is eval uat-
ed for is greater than a given value.

PHPUNi t _Fr amewor k_Constrai nt _Or
gr eat er ThanOr Equal (mi xed $val ue)

Congtraint that asserts that the valueit is evaluat-
ed for is greater than or equal to a given value.

PHPUNi t _Fr amewor k_Con-
straint_C assHasAttribute

cl assHasAttribute(string $at-
tri but eNane)

Constraint that asserts that the classit is evaluat-
ed for has a given attribute.

PHPUNi t _Franmewor k_Constrai nt _
Cl assHasStaticAttribute

cl assHasStaticAttribute(string
$attri but eNane)

Constraint that asserts that the classit is evaluat-
ed for has a given static attribute.

PHPUni t _Fr amewor k_Con-
straint_CbjectHasAttribute

Congtraint that asserts that the object it is evalu-
ated for has a given attribute.

67

Writing Tests for PHPUnNit

Constraint

Meaning

hasAttri bute(string $attribute-
Nane)

PHPUNi t _Fr amewor k_Constrai nt _
I sldentical identical To(m xed
$val ue)

Constraint that asserts that one value isidentical
to another.

PHPUNni t _Franmewor k_Constraint _|s-
Fal se i sFal se()

Constraint that asserts that the value it is eval uat-
ed isFALSE.

PHPUni t _Framewor k_Constraint _
I sl nstanceO islnstanceO(string
$cl assNane)

Constraint that asserts that the object it is evalu-
ated for is an instance of agiven class.

PHPUNni t _Framewor k_Constraint_|s-
Nul I isNull ()

Constraint that asserts that the valueit is eval uat-
edisNULL.

PHPUNI t _Fr amewor k_Constrai nt _
| sTrue isTrue()

Constraint that asserts that the valueit is evaluat-
ed is TRUE.

PHPUNi t _Franmewor k_Constrai nt _
I sType isType(string $type)

Constraint that asserts that the value it is eval uat-
ed for is of aspecified type.

PHPUni t _Framewor k_Constraint _
LessThan | essThan(m xed $val ue)

Constraint that asserts that the valueit is eval uat-
ed for is smaller than agiven value.

PHPUni t _Framewor k_Constrai nt_Or
| essThanOr Equal (i xed $val ue)

Congtraint that asserts that the valueit is evaluat-
ed for is smaller than or equal to agiven value.

| ogi cal And() Logical AND.
| ogi cal Not (PHPUni t _Fr amewor k_ Logical NOT.
Constraint $constraint)

| ogi cal O () Logica OR.

| ogi cal Xor () Logical XOR.

PHPUNI t _Fr amewor k_

Const rai nt _PCREMat ch

mat chesRegul ar Expr essi on(string
$pattern)

Constraint that asserts that the string it is evalu-
ated for matches aregular expression.

PHPUNi t _Fr amewor k_Con-

straint _StringCont ai ns
stringContains(string $string,
bool $case)

Congtraint that asserts that the string it is evalu-
ated for contains a given string.

PHPUni t _Fr amewor k_Con-
straint_StringEndsWth
stringEndsWth(string $suffix)

Constraint that asserts that the string it is evalu-
ated for ends with a given suffix.

PHPUNi t _Framewor k_Con-
straint_StringStartsWth
stringStartsWth(string $prefix)

Congtraint that asserts that the string it is evalu-
ated for starts with a given prefix.

assert True()

assert True(bool $condition[,

string $nessage = ''])

Reports an error identified by $message if $condi ti on isFALSE.

Example 4.56. Usage of assertTrue()

<?php

cl ass TrueTest extends PHPUnit_Franewor k_Test Case

{

68

Writing Tests for PHPUnNit

public function testFailure()

{
}

$t hi s- >assert Tr ue(FALSE)

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Tinme: 0 seconds, Menory: 5.00M
There was 1 failure:

1) TrueTest::testFailure
Fai |l ed asserting that false is true.

/ home/ sb/ Tr ueTest . php: 6

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit TrueTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F

Tinme: 0 seconds, Menory: 5.00M

There was 1 failure:

1) TrueTest::testFailure
Fai |l ed asserting that false is true.

/ home/ sb/ Tr ueTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Xm Fi | eEqual sXm Fi |l e()

assert Xm Fi | eEqual sXm Fil e(string $expectedFile, string $actual-
File[, string $nessage = ''])

Reports an error identified by $nmessage if the XML document in $act ual Fi | e isnot equal to
the XML document in $expect edFi | e.

assert Xn Fi | eNot Equal sXm Fi | e() istheinverse of this assertion and takes the same ar-
guments.

Example 4.57. Usage of asser tXmlFileEqualsXmlFile()

<?php
class Xm Fi | eEqual sXm Fi | eTest extends PHPUni t _Franmewor k_Test Case
{

public function testFailure()

{
$t hi s- >assert Xm Fi | eEqual sXn Fi | e(

'/ honme/ sb/ expected. xm ', '/hone/sb/actual .xm");

69

Writing Tests for PHPUnNit

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) Xm Fil eEqual sXm Fil eTest::testFailure

Fai |l ed asserting that two DOM docunents are equal .
--- Expected

+++ Act ual

@ @@
<?xm version="1.0"?>
<f oo>

- <bar/>

+ <baz/>
</ foo>

/ home/ sb/ Xm Fi | eEqual sXm Fi | eTest . php: 7

FAI LURES!
Tests: 1, Assertions: 3, Failures: 1.phpunit Xm Fil eEqual sXm Fil eTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

F
Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) Xm Fil eEqual sXm Fi | eTest::testFailure

Fai |l ed asserting that two DOM docunents are equal .
--- Expected

+++ Act ual

@ @@
<?xm version="1.0"?>
<f oo>

- <bar/>

+ <baz/>
</ foo>

/ home/ sb/ Xm Fi | eEqual sXm Fi | eTest . php: 7

FAI LURES!
Tests: 1, Assertions: 3, Failures: 1.

assert Xm Stri ngEqual sXm Fi | e()

assert Xm Stri ngEqual sXml File(string $expectedFile, string $actu-
al Xm [, string $nessage = ''])

Reports an error identified by $nessage if the XML document in $act ual Xm isnot equal to the
XML document in $expect edFi | e.

assert Xnml St ri ngNot Equal sXm Fi | e() isthe inverse of this assertion and takes the same
arguments.

Example 4.58. Usage of assertXmlStringEqualsXmlFile()

<?php

70

Writing Tests for PHPUnNit

class Xm StringEqual sXm Fi | eTest extends PHPUnit _Framewor k_Test Case

{

public function testFailure()

{

$t hi s->assert Xm Stri ngEqual sXm Fi | e(
'/ hone/ sb/ expected. xm ', ' <foo><baz/></fo0>")

}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
=

Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) Xm StringEqual sXm Fi |l eTest::testFailure
Fai |l ed asserting that two DOM docunents are equal
--- Expected

+++ Actua

@ @@

<?xm version="1.0"?>
<f oo>

- <bar/>

+ <baz/>

</ foo>

/ hone/ sb/ Xm StringEqual sXm Fi | eTest. php: 7

FAI LURES!
Tests: 1, Assertions: 2, Failures: 1.phpunit Xm StringEqual sXm Fi | eTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

F
Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) Xm StringEqual sXm Fi |l eTest::testFailure
Fai |l ed asserting that two DOM docunents are equal
--- Expected

+++ Actua

@ @@

<?xm version="1.0"?>
<f oo>

- <bar/>

+ <baz/>

</ foo>

/ hone/ sb/ Xm StringEqual sXm Fi | eTest. php: 7

FAI LURES
Tests: 1, Assertions: 2, Failures: 1.

assert Xm Stri ngEqual sXm String()

assert Xm Stri ngEqual sXm String(string %$expectedXm , string $actu-
al Xm [, string $message = ''])

71

Writing Tests for PHPUnNit

Reports an error identified by $nmessage if the XML document in $act ual X isnot equal to the
XML document in $expect edXm .

assert Xm St ri ngNot Equal sXm St ri ng() istheinverse of thisassertion and takesthe same
arguments.

Example 4.59. Usage of assertXmlStringequalsXmlString()

<?php
class Xm StringEqual sXm StringTest extends PHPUnit_Framewor k_Test Case
{

public function testFailure()

{
$t hi s- >assert Xm Stri ngEqual sXm Stri ng(

' <f oo><bar/ ></foo0>', '<foo><baz/></fo0>");

PHPUnit 3.7.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Xm StringEqual sXm StringTest::testFailure
Fai |l ed asserting that two DOM docunents are equal .
--- Expected
+++ Act ual
@@ @@
<?xm version="1.0"?>
<f 0oo>
- <bar/>
+ <baz/>
</ foo>

/ home/ sb/ Xm St ri ngEqual sXm Stri ngTest. php: 7

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.phpunit Xm StringEqual sXm StringTest
PHPUnit 3.7.0 by Sebastian Bergmann.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Xm StringEqual sXm StringTest::testFailure
Fai |l ed asserting that two DOM docunents are equal .
--- Expected
+++ Act ual
@@ a@
<?xm version="1.0"?>
<f 00>
- <bar/>
+ <baz/>
</ foo>

/ home/ sb/ Xm St ri ngEqual sXm Stri ngTest. php: 7

72

Writing Tests for PHPUnNit

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

Error output

Whenever atest fails PHPUnit tries its best to provide you with as much context as possible that can
help to identify the problem.

Example 4.60. Error output generated when an array comparison fails

<?php
class ArrayDi ffTest extends PHPUnit_Framewor k_Test Case
{
public function testEquality() {
$t hi s- >assert Equal s(
array(1,2,3 ,4,5,6),
array(1, 2,33,4,5,6)

PHPUnit 3.6.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) ArrayDiffTest::testEquality
Fai l ed asserting that two arrays are equal
--- Expected
+++ Act ual
@@ @@
Array (
0 =>
=>
=>
=>
=>
=>
=>

abhwNNBRE
OO WWNER
w

)

/ home/ sb/ ArrayDi ff Test. php: 7

FAI LURES

Tests: 1, Assertions: 1, Failures: 1.phpunit ArrayD ffTest
PHPUnit 3.6.0 by Sebastian Bergmann.

F

Tinme: 0 seconds, Menory: 5.25M

There was 1 failure:

1) ArrayDiffTest::testEquality

Fai l ed asserting that two arrays are equal
--- Expected

73

Writing Tests for PHPUnNit

+++ Act ual
@ @@
Array (
0 =>
=>
=>
=>
=>
=>
=>

abhwnNNBRE
OO WWNE
w

)

/ home/ sb/ ArrayDi f f Test. php: 7

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

In this example only one of the array values differs and the other values are shown to provide context
on where the error occurred.

When the generated output would be long to read PHPUnit will split it up and provide afew lines of
context around every difference.

Example 4.61. Error output when an array comparison of an long array fails

<?php
cl ass LongArrayDiffTest extends PHPUnit_Franewor k_Test Case
{
public function testEquality() {
$t hi s- >assert Equal s(
array(0,0,0,0,0,0,0,0,0,0,0,0,1,2,3 ,4,5,6),
array(0,0,0,0,0,0,0,0,0,0,0,0,1,2,33,4,5, 6)

PHPUnit 3.6.0 by Sebastian Bergmann.
F

Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) LongArrayDiffTest::testEquality
Fai l ed asserting that two arrays are equal.
--- Expected
+++ Act ual
@@ @@
13 =>
- 14 =>
T 14 =>
15 =>
16 =>
17 =>

oOUhWWN

/ home/ sb/ LongArrayDi f f Test. php: 7

FAI LURES!

74

Writing Tests for PHPUnNit

Tests: 1, Assertions: 1, Failures: 1.phpunit LongArrayDiff Test
PHPUnit 3.6.0 by Sebastian Bergmann.

F
Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) LongArrayDiffTest::testEquality
Fai l ed asserting that two arrays are equal
--- Expected
+++ Act ual
@@ @@
13 =>
- 14 =>
o 14 =>
15 =>
16 =>
17 =>

U WWN

)

/ home/ sb/ LongArrayDi f f Test. php: 7

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

Edge cases

When a comparison fails PHPUnNIt creates a textual representations of the input values and compares
those. Due to that implementation a diff might show more problems than actually exist.

This only happens when using assertEqual s or other ‘weak' comparison functions on arrays or objects.

Example 4.62. Edge casein the diff generation when using weak comparison

<?php
cl ass ArrayWakConpari sonTest extends PHPUnit_Franewor k_Test Case
{
public function testEquality() {
$t hi s- >assert Equal s(
array(l1 ,2,3 ,4,5,6),
array('1',2,33,4,5,6)

PHPUnit 3.6.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 5.25M

There was 1 failure:

1) ArrayWakConparisonTest::testEquality
Fai l ed asserting that two arrays are equal
--- Expected

+++ Actua

@@ @@

75

Writing Tests for PHPUnNit

/ home/ sb/ Ar r ayWeakConpari sonTest . php: 7

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit ArrayWakConpari sonTest
PHPUnit 3.6.0 by Sebastian Bergmann.

F

Time: 0 seconds, Menory: 5.25M

There was 1 failure:

1) ArrayWakConparisonTest::testEquality
Fai l ed asserting that two arrays are equal.

--- Expected
+++ Act ual
@ @@
Array (
- 0 =>1
+ 0=>"'1
1 =>2
- 2 =>3
+ 2 => 33
3 =>4
4 =>5
5=>6
)

/ home/ sb/ Ar r ayWeakConpari sonTest . php: 7

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

In this example the difference in the first index between 1 and ' 1' isreported even so assertEquals
considers the values as a match.

76

Chapter 5. The Command-Line Test
Runner

The PHPUnNIit command-line test runner can be invoked through the phpuni t command. The fol-
lowing code shows how to run tests with the PHPUnNit command-line test runner:

PHPUnit 3.7.0 by Sebastian Ber gnmann.

Time: 0 seconds

OK (2 tests, 2 assertions)phpunit ArrayTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

Time: 0 seconds

OK (2 tests, 2 assertions)

For each test run, the PHPUnit command-line tool prints one character to indicate progress:
Printed when the test succeeds.

Printed when an assertion fails while running the test method.

Printed when an error occurs while running the test method.

»w m T

Printed when the test has been skipped (see Chapter 9, Incomplete and Skipped Tests).

| Printed when the test is marked as being incomplete or not yet implemented (see Chapter 9, In-
complete and Skipped Tests).

PHPUniIt distinguishes between failures and errors. A failure is a violated PHPUnit assertion such
asafailingassert Equal s() call. Anerror isan unexpected exception or a PHP error. Sometimes
this distinction proves useful since errorstend to be easier to fix than failures. If you have abig list of
problems, it isbest to tacklethe errorsfirst and seeif you have any failuresleft when they are all fixed.

Command-Line switches

Let'stake alook at the command-line test runner's switches in the following code:

PHPUnit 3.7.0 by Sebastian Bergmann.

Usage: phpunit [switches] UnitTest [UnitTest. php]
phpunit [swi tches] <directory>

--log-junit <file> Log test execution in JuUnit XM. format to file.
--log-tap <file> Log test execution in TAP format to file.
--log-json <file> Log test execution in JSON format.

--coverage-clover <file> GCenerate code coverage report in C over XM. fornat.

--coverage-htm <dir> Generate code coverage report in HTM fornat.
--coverage- php <file> Seri ali ze PHP_CodeCoverage object to file.
--coverage-text=<fil e> Generate code coverage report in text format.

Default to witing to the standard out put.

77

The Command-Line Test Runner

--testdox-htm <file> Wite agile docunentation in HTM. format to file.
--testdox-text <file> Wite agile docunentation in Text format to file.
--filter <pattern> Filter which tests to run.

--group ... Only runs tests fromthe specified group(s).
--exclude-group ... Excl ude tests fromthe specified group(s).
--list-groups Li st avail abl e test groups.

--| oader <I oader> Test Sui t eLoader inplenentation to use.

--printer <printer> Test Sui t eLi stener inplenmentation to use.

--repeat <tines> Runs the test(s) repeatedly.

--tap Report test execution progress in TAP fornmat.

- -testdox Report test execution progress in TestDox fornmat.
--colors Use col ors in output.

--stderr Wite to STDERR i nstead of STDOUT.
--stop-on-error St op execution upon first error.
--stop-on-failure St op execution upon first error or failure.

- - st op- on- ski pped St op execution upon first skipped test.
--stop-on-inconpl ete St op execution upon first inconplete test.
--strict Run tests in strict node.

-V|--verbose Qut put nore verbose information.

- - debug Di spl ay debbuging infornmati on during test execution.
--process-isol ation Run each test in a separate PHP process.

- -no- gl obal s- backup Do not backup and restore $G.OBALS for each test.
--static-backup Backup and restore static attributes for each test.
--bootstrap <file> A "bootstrap" PHP file that is run before the tests.
-c|--configuration <file> Read configuration from XM file.
--no-configuration Ignore default configuration file (phpunit.xn).
--include-path <path(s)> Prepend PHP's include_path with given path(s).

-d key[=val ue] Sets a php.ini val ue.

-h|--help Prints this usage information.

--version Prints the version and exits.

- - debug Qut put debuggi ng i nformation. phpunit --help

PHPUnit 3.7.0 by Sebastian Bergmann.

Usage: phpunit [switches] UnitTest [UnitTest. php]
phpunit [switches] <directory>

--log-junit <file> Log test execution in JuUnit XM. fornmat to file.
--log-tap <file> Log test execution in TAP format to file.
--log-json <file> Log test execution in JSON format.

--coverage-clover <file> GCenerate code coverage report in C over XM. format.

--coverage-htm <dir> Generate code coverage report in HTM. format.
--coverage- php <file> Seri al i ze PHP_CodeCoverage object to file.
--coverage-text=<fil e> Generate code coverage report in text format.

Default to witing to the standard out put.

--testdox-htm <file> Wite agile docunentation in HTM. format to file.
--testdox-text <file> Wite agile docunentation in Text format to file.
--filter <pattern> Filter which tests to run.

--group ... Only runs tests fromthe specified group(s).
--exclude-group ... Excl ude tests fromthe specified group(s).
--1ist-groups Li st avail abl e test groups.

--| oader <I oader> Test Sui t eLoader i nplenentation to use.

78

The Command-Line Test Runner

--printer <printer> Test Sui t eLi stener inplenmentation to use.

--repeat <tines> Runs the test(s) repeatedly.

--tap Report test execution progress in TAP fornmat.

- -testdox Report test execution progress in TestDox fornmat.

--colors Use col ors in output.

--stderr Wite to STDERR i nstead of STDOUT.

--stop-on-error St op execution upon first error.

--stop-on-failure St op execution upon first error or failure.

- - st op- on- ski pped St op execution upon first skipped test.

--stop-on-inconpl ete St op execution upon first inconplete test.

--strict Run tests in strict node.

-V| --verbose Qut put nore verbose information.

- - debug Di spl ay debbuging informati on during test execution.

--process-isol ation Run each test in a separate PHP process.

- -no- gl obal s- backup Do not backup and restore $GLOBALS for each test.

--static-backup Backup and restore static attributes for each test.

--bootstrap <file> A "bootstrap" PHP file that is run before the tests.

-c|--configuration <file> Read configuration from XM file.

--no-configuration Ignore default configuration file (phpunit.xn).

--include-path <path(s)> Prepend PHP's include_path with given path(s).

-d key[=val ue] Sets a php.ini val ue.

-h|--help Prints this usage information.

--version Prints the version and exits.

- - debug Qut put debuggi ng i nfornation.

phpunit Unit Test Runs the tests that are provided by the class Uni t Test . This

classisexpectedtobedeclaredintheUni t Test . php source-
file.

Unit Test must be either a class that inherits from
PHPUni t _Fr amewor k_Test Case or aclassthat provides
apublic static suite() method which returns an
PHPUni t _Framewor k_Test object, for example an in-
stance of the PHPUNni t _Fr anmewor k_Test Sui t e class.

phpunit Unit Test Runs the tests that are provided by the class Uni t Test . This
Uni t Test . php classis expected to be declared in the specified sourcefile.
--log-junit Generates alogfile in JUnit XML format for the tests run. See

Chapter 18, Logging for more details.

--log-tap Generates a logfile using the Test Anything Protocol (TAP)
[http://testanything.org/] format for the: tests run. See Chap-
ter 18, Logging for more details.

--log-json Generates alogfile using the JSON [http://www.json.org/] for-
mat. See Chapter 18, Logging for more details.

--coverage-htm Generates a code coverage report in HTML format. See Chap-
ter 14, Code Coverage Analysis for more details.

Please note that this functiondlity is only available when the
tokenizer and X debug extensions are installed.

--coverage-cl over Generates alogfilein XML format with the code coverage in-
formation for the tests run. See Chapter 18, Logging for more
details.

79

http://testanything.org/
http://testanything.org/
http://www.json.org/
http://www.json.org/

The Command-Line Test Runner

--cover age- php

--cover age-text

--testdox-htm and- -
t est dox-t ext

--filter

--group

- - excl ude- group

--list-groups

- -| oader

--printer

- -repeat

--tap

--testdox

--colors

Please note that this functionality is only available when the
tokenizer and Xdebug extensions are installed.

Generates a serialized PHP_CodeCoverage aobject with the
code coverage information.

Please note that this functiondlity is only available when the
tokenizer and X debug extensions are installed.

Generates alogfile or command-line output in human readable
format with the code coverageinformation for thetestsrun. See
Chapter 18, Logging for more details.

Please note that this functionality is only available when the
tokenizer and Xdebug extensions are installed.

Generates agile documentation in HTML or plain text format
for the tests that are run. See Chapter 15, Other Uses for Tests
for more details.

Only runs tests whose name matches the given pattern. The
pattern can be either the name of a single test or aregular ex-
pression [http://www.php.net/pcre] that matches multiple test
names.

Only runstestsfrom the specified group(s). A test can betagged
as belonging to a group using the @r oup annotation.

The @ut hor annotation is an alias for @r oup allowing to
filter tests based on their authors.

Exclude tests from the specified group(s). A test can be tagged
as belonging to a group using the @r oup annotation.

List available test groups.

Specifiesthe PHPUni t _Runner _Test Sui t eLoader im-
plementation to use.

The standard test suite loader will look for the sourcefilein the
current working directory and in each directory that is spec-
ified in PHP'si ncl ude_pat h configuration directive. Fol-
lowing the PEAR Naming Conventions, a class name such
asProj ect _Package_C ass is mapped to the sourcefile
name Pr oj ect / Package/ Cl ass. php.

Specifies the result printer to use. The printer class
must extend PHPUni t _Uti | _Print er andimplement the
PHPUni t _Framewor k_Test Li st ener interface.

Repeatedly runs the test(s) the specified number of times.
Reports the test progress using the Test Anything Protocol
(TAP) [http://testanything.org/]. See Chapter 18, Logging for
more details.

Reports the test progress as agile documentation. See Chap-
ter 15, Other Uses for Tests for more details.

Use colorsin output.

80

http://www.php.net/pcre
http://www.php.net/pcre
http://www.php.net/pcre
http://testanything.org/
http://testanything.org/
http://testanything.org/

The Command-Line Test Runner

--stderr
--stop-on-error
--stop-on-failure

- - st op- on- ski pped
--stop-on-inconpl ete
--strict

--verbose

--process-isolation

- - no- gl obal s-backup

--static-backup

--bootstrap

--configuration,-c

--no-configuration

--include-path
-d

- -debug

Optionally print to STDERR instead of STDOUT.
Stop execution upon first error.

Stop execution upon first error or failure.

Stop execution upon first skipped test.

Stop execution upon first incomplete test.

Run testsin strict mode.

Output more verbose information, for instance the names of
tests that were incomplete or have been skipped.

Run each test in a separate PHP process.

Do not backup and restore $GLOBALS. See the section called
“Global State” for more details.

Backup and restore static attributes of user-defined classes. See
the section called “Global State” for more details.

A "bootstrap" PHP file that is run before the tests.

Read configuration from XML file. See Appendix C, The XML
Configuration File for more details.

If phpunit.xm or phpunit. xn . di st (in that order)
exist in the current working directory and - - conf i gur a-
t i on isnot used, the configuration will be automatically read
from that file.

Ignore phpuni t . xm and phpuni t. xm . di st from the
current working directory.

Prepend PHP'si ncl ude_pat h with given path(s).
Sets the value of the given PHP configuration option.

Output debug information such as the name of atest when its
execution starts.

81

Chapter 6. Fixtures

One of the most time-consuming parts of writing tests is writing the code to set the world up in a
known state and then return it to its origina state when the test is complete. Thisknown stateis called
the fixture of the test.

In Example 4.1, “Testing array operations with PHPUnit”, the fixture was simply the array that is
stored in the $f i xt ur e variable. Most of the time, though, the fixture will be more complex than a
simple array, and the amount of code needed to set it up will grow accordingly. The actual content of
the test gets lost in the noise of setting up the fixture. This problem gets even worse when you write
several tests with similar fixtures. Without some help from the testing framework, we would have to
duplicate the code that sets up the fixture for each test we write.

PHPUnNIt supports sharing the setup code. Before a test method is run, a template method called
set Up() isinvoked. set Up() iswhere you create the objects against which you will test. Once
the test method has finished running, whether it succeeded or failed, another template method called
t ear Down() isinvoked.t ear Down() iswhereyou clean up the objects against which you tested.

In Example 4.2, “Using the @lepends annotation to express dependencies’ we used the produc-
er-consumer relationship between tests to share fixture. Thisis not always desired or even possible.
Example 6.1, “Using setUp() to create the stack fixture” shows how we can write the tests of the
St ackTest insuch away that not the fixture itself is reused but the code that createsit. First we de-
claretheinstance variable, $st ack, that we are going to use instead of amethod-local variable. Then
we put the creation of thear r ay fixtureintotheset Up() method. Finally, weremovetheredundant
code from the test methods and use the newly introduced instance variable, $t hi s- >st ack, instead
of the method-local variable $st ack withtheassert Equal s() assertion method.

Example 6.1. Using setUp() to create the stack fixture

<?php
cl ass StackTest extends PHPUnit _Franewor k_Test Case

{

protected $stack;

protected function setUp()

{
$this->stack = array();
}
public function testEnpty()
{
$t hi s- >assert True(enpt y($t hi s->stack));
}

public function testPush()

{
array_push($this->stack, 'foo');
$t hi s- >assert Equal s(' foo', $this->stack[count($this->stack)-1]);
$t hi s- >assert Fal se(enpt y($t hi s->st ack));

}

public function testPop()

{
array_push($this->stack, 'foo');
$t hi s- >assert Equal s(' foo', array_pop($this->stack));
$t hi s- >assert True(enpt y($t hi s->stack));
}
}
?>

82

Fixtures

Theset Up() andt ear Down() template methods are run once for each test method (and on
fresh instances) of the test case class.

In addition, the set UpBef or eCl ass() andt ear DownAf t er Cl ass() template methods
are called before the first test of the test case classis run and after the last test of the test case class
isrun, respectively.

The example below shows all template methods that are available in atest case class.

Example 6.2. Example showing all template methods available

<?php
cl ass Tenpl at eMet hodsTest ext ends PHPUni t _Franewor k_Test Case
{

public static function set UpBefored ass()

{
fwite(STDOUT, _ METHOD _ . "\n");
}
protected function setUp()
{
fwite(STDOUT, _ METHOD _ . "\n");
}
protected function assertPreConditions()
{
fwite(STDOUT, _ METHOD _ . "\n");
}
public function testOne()
{
fwite(STDOUT, _ METHOD _ . "\n");
$t hi s- >assert Tr ue(TRUE)
}
public function testTwo()
{
fwite(STDOUT, _ METHOD _ . "\n");
$t hi s- >assert True(FALSE) ;
}
protected function assertPost Conditions()
{
fwite(STDOUT, _ METHOD _ . "\n");
}
protected function tearDown()
{
fwite(STDOUT, _ METHOD _ . "\n");
}
public static function tearDownAfterC ass()
{
fwite(STDOUT, _ METHOD _ . "\n");
}
protected functi on onNot Successf ul Test (Excepti on $e)
{
fwite(STDOUT, _ METHOD _ . "\n");
throw $e;
}
}
?>

83

Fixtures

PHPUNI t

Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
. Tenpl at eMet hodsTest :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
FTenpl at eMet hodsTest :

Time: 0 seconds,

There was 1 failure:

3.7.0 by Sebastian Ber gnann.

set UpBef or ed ass
set Up

assert PreCondi tions
t est One

assert Post Condi ti ons
t ear Down

:setUp

assert PreCondi tions
t est Two

t ear Down

onNot Successf ul Test
.t ear DownAft er Cl ass

Menmory: 5.25M

1) Tenpl at eMet hodsTest : : t est Two

Fai | ed asserting that

<bool ean: fal se> is true.

/ honme/ sb/ Tenpl at eMet hodsTest . php: 30

FAI LURES!
Tests: 2, Assertions:
PHPUNI t

Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
. Tenpl at eMet hodsTest :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
Tenpl at eMet hodsTest : :
FTenpl at eMet hodsTest :

Time: 0 seconds,

There was 1 failure:

2, Failures:

set UpBef or ed ass
set Up

assert PreCondi tions
t est One

assert Post Condi ti ons
t ear Down

:setUp

assert PreCondi tions
t est Two

t ear Down

onNot Successf ul Test
.t ear DownAft er Cl ass

Mermory: 5.25M

1) Tenpl at eMet hodsTest : : t est Two

Fai | ed asserting that

<bool ean: fal se> is true.

/ honme/ sb/ Tenpl at eMet hodsTest . php: 30

FAI LURES!
Tests: 2, Assertions:

2, Failures: 1.

1. phpunit Tenpl at eMet hodsTest
3.7.0 by Sebastian Ber gnann.

More setUp() than tearDown()

set Up() andt ear Down() are nicely symmetrical in theory but not in practice. In practice, you
only need toimplement t ear Down() if you have allocated external resources likefilesor socketsin
set Up() . If yourset Up() just createsplain PHP objects, you can generally ignoret ear Down() .
However, if you create many objectsin your set Up() , you might want to unset () the variables
pointing to those objects in your t ear Down() so they can be garbage collected. The garbage col-
lection of test case objectsis not predictable.

Fixtures

Variations

What happens when you have two tests with dlightly different setups? There are two possibilities:

» If theset Up() code differs only slightly, move the code that differs from the set Up() codeto
the test method.

« If you redlly have a different set Up() , you need a different test case class. Name the class after
the difference in the setup.

Sharing Fixture

Therearefew good reasonsto share fixtures between tests, but in most casesthe need to share afixture
between tests stems from an unresolved design problem.

A good example of afixture that makes sense to share across severa tests is a database connection:
you log into the database once and reuse the database connection instead of creating anew connection
for each test. This makes your tests run faster.

Example 6.3, “ Sharing fixture between the tests of atest suite” usesthe set UpBef or ed ass()
and t ear DownAf t er Cl ass() template methods to connect to the database before the test case
class first test and to disconnect from the database after the last test of the test case, respectively.

Example 6.3. Sharing fixture between the tests of a test suite

<?php
cl ass Dat abaseTest extends PHPUnit_Franewor k_Test Case

{
protected static $dbh;

public static function set UpBefored ass()

{
}

public static function tearDownAfterC ass()

{
}

sel f::$dbh = new PDQ(' sqglite:: menory:")

sel f::$dbh = NULL

}

?>

It cannot be emphasized enough that sharing fixtures between tests reduces the value of the tests.
The underlying design problem isthat objects are not loosely coupled. Y ou will achieve better results
solving the underlying design problem and then writing tests using stubs (see Chapter 10, Test Dou-
bles), than by creating dependencies between tests at runtime and ignoring the opportunity to improve
your design.

Global State

It is hard to test code that uses singletons. [http://googl etesting.bl ogspot.com/2008/05/tott-using-de-
pendancy-injection-to.html] The same istrue for code that uses global variables. Typically, the code
you want to test is coupled strongly with a global variable and you cannot control its creation. An
additional problem isthe fact that one test's change to a global variable might break another test.

In PHP, global variables work like this:

e A global variable $f oo = ' bar' ; isstoredas$GLOBALS[' foo'] = 'bar';.

85

http://googletesting.blogspot.com/2008/05/tott-using-dependancy-injection-to.html
http://googletesting.blogspot.com/2008/05/tott-using-dependancy-injection-to.html
http://googletesting.blogspot.com/2008/05/tott-using-dependancy-injection-to.html

Fixtures

» The $GLOBALS variable is a so-called super-global variable.
 Super-global variables are built-in variables that are always available in al scopes.

* In the scope of a function or method, you may access the global variable $f 0o by either directly
accessing $GLOBALS[' foo'] or by using gl obal $f oo; to create aloca variable with a
reference to the global variable.

Besides global variables, static attributes of classes are also part of the global state.

By default, PHPUnit runs your tests in a way where changes to global and super-global variables
(PGLOBALS, $_ENV, $_POST,$_GCET, $_COXKI E, $_SERVER, $_FI LES, $_REQUEST) do not
affect other tests. Optionally, thisisolation can be extended to static attributes of classes.

Note

The implementation of the backup and restore operations for static attributes of classes re-
quires PHP 5.3 (or greater).

The implementation of the backup and restore operations for global variables and static at-
tributes of classesusesseri al i ze() andunseriali ze().

Objects of some classes that are provided by PHP itself, such as PDOfor example, cannot be
serialized and the backup operation will break when such an object is stored in the $GLOB-
ALS array, for instance.

The @ackupd obal s annotation that is discussed in the section called “@ackupd obal s”
can be used to control the backup and restore operations for global variables. Alternatively, you can
provide a blacklist of global variables that are to be excluded from the backup and restore operations
like this

cl ass MyTest extends PHPUnit_Framewor k_Test Case

{
protected $backupd obal sBl acklist = array('global Variable');

1

Note

Please note that setting the $backup@ obal sBl ackl i st attributeinsidetheset Up()
method, for instance, has no effect.

The @ackupSt ati cAtt ri but es annotation that is discussed in the section called “ @ack-
upStati cAttri but es” canbeused to control the backup and restore operations for static attrib-
utes. Alternatively, you can provide a blacklist of static attributes that are to be excluded from the
backup and restore operations like this

cl ass MyTest extends PHPUnit _Framewor k_Test Case

{
protected $backupStaticAttributesBl acklist = array(

‘classNanme' => array('attributeNane')
Ik

/1

Note

Please note that setting the $backupSt ati cAttri but esBl ackl i st attribute inside
theset Up() method, for instance, has no effect.

86

Chapter 7. Organizing Tests

One of the goals of PHPUnit (see Chapter 2, PHPUnit's Goals) is that tests should be composable:
we want to be able to run any number or combination of tests together, for instance all tests for the
whole project, or the tests for all classes of a component that is part of the project, or just the tests
for asingle class.

PHPUnit supports different ways of organizing tests and composing them into atest suite. This chapter
shows the most commonly used approaches.

Composing a Test Suite Using the Filesystem

Probably the easiest way to compose atest suite isto keep all test case sourcefilesin atest directory.
PHPUnIt can automatically discover and run the tests by recursively traversing the test directory.

Lets take a look at the test suite of the Object_Freezer [http://github.com/sebastianbergmann/php-
object-freezer/] library. Looking at this project’s directory structure, we see that the test case classes
in the Test s directory mirror the package and class structure of the System Under Test (SUT) in
the Cbj ect directory:

oj ect Tests
| -- Freezer -- Freezer
| -- HashGener at or | -- HashGener at or
*-- NonRecursi veSHAL. php “-- NonRecursi veSHAL1Test . php
- HashGener at or. php
- | dCener at or
*-- UUl D. php
- | dGenerat or. php

I
I I
I I I
I | = I
| | - | - | dGener at or
I I I
I | = I
| | -- LazyProxy. php |
I | = I
I I I
I I I
I I I
I J= I
I I

“-- UU DTest . php

- Storage - Storage
*-- CouchDB. php *-- CouchDB
| -- WthLazyLoadTest. php
“-- Wthout LazyLoadTest . php
- Storage. php - StorageTest. php
.- Uil.php “-- Uil Test. php
“-- Freezer.php “-- FreezerTest. php

To run all tests for the library we just need to point the PHPUnit command-line test runner to the
test directory:

PHPUnit 3.7.0 by Sebastian Bergmann.

.. 60 / 75
Time: 0 seconds

K (75 tests, 164 assertions)phpunit Tests

PHPUnit 3.7.0 by Sebastian Bergmann.
.. 60 / 75

Time: 0 seconds

OK (75 tests, 164 assertions)

87

http://github.com/sebastianbergmann/php-object-freezer/
http://github.com/sebastianbergmann/php-object-freezer/
http://github.com/sebastianbergmann/php-object-freezer/

Organizing Tests

Note

If you point the PHPUnit command-linetest runner to adirectory it will look for * Test . php
files.

To run only the tests that are declared in the Cbj ect _Fr eezer Test test case classin Test s/
Freezer Test . php we can use the following command:

PHPUnit 3.7.0 by Sebastian Bergmann.
Time: 0 seconds

OK (28 tests, 60 assertions)phpunit Tests/FreezerTest
PHPUnit 3.7.0 by Sebastian Bergmann.

Time: 0 seconds

OK (28 tests, 60 assertions)

For more fine-grained control of which teststo run we can usethe- - fi | t er switch:

PHPUNnit 3.7.0 by Sebastian Ber gnann.

Time: 0 seconds

K (1 test, 2 assertions)phpunit --filter testFreezi ngAnOhj ect Wrks Tests
PHPUnit 3.7.0 by Sebastian Ber gnann.

Time: 0 seconds

K (1 test, 2 assertions)

Note

A drawback of this approach is that we have no control over the order in which the test are
run. This can lead to problems with regard to test dependencies, see the section called “ Test
Dependencies’. In the next section you will see how you can make the test execution order
explicit by using the XML configuration file.

Composing a Test Suite Using XML Configu-
ration

PHPUnit's XML configuration file (Appendix C, The XML Configuration File) can also be used to
compose a test suite. Example 7.1, “Composing a Test Suite Using XML Configuration” shows a
minimal examplethat will add all * Test classesthat arefoundin* Test . php fileswhentheTest s
isrecursively traversed.

Example 7.1. Composing a Test Suite Using XML Configuration

<phpuni t >

88

Organizing Tests

<testsuites>
<testsuite nane="0bj ect _Freezer">
<di rect ory>Test s</directory>
</testsuite>
</testsuites>
</ phpuni t >

The order in which tests are executed can be made explicit:
Example 7.2. Composing a Test Suite Using XML Configuration

<phpuni t >
<testsuites>
<testsuite name="0bject_Freezer">
<fil e>Test s/ Freezer/ HashGener at or/ NonRecur si veSHA1Test . php</fil e>
<fil e>Tests/Freezer/|dGenerator/UU DTest . php</fil e>
<fil e>Tests/Freezer/Util Test.php</file>
<fil e>Tests/FreezerTest. php</file>
<fil e>Tests/ Freezer/ St orageTest. php</file>
<fil e>Tests/ Freezer/ Storage/ CouchDB/ Wt hLazylLoadTest. php</fil e>
<fil e>Tests/ Freezer/ St orage/ CouchDB/ Wt hout LazyLoadTest . php</fil e>
</testsuite>
</testsuites>
</ phpuni t >

89

Chapter 8. Database Testing

Many beginner and intermediate unit testing examples in any programming language suggest that it
is perfectly easy to test your application's logic with simple tests. For database-centric applications
thisisfar away from thereality. Start using Wordpress, TY PO3 or Symfony with Doctrine or Propel,
for example, and you will easily experience considerable problems with PHPUnit: just because the
database is so tightly coupled to these libraries.

Y ou probably know this scenario from your daily work and projects, where you want to put your fresh
or experienced PHPUNit skillsto work and get stuck by one of the following problems:

1. The method you want to test executes a rather large JOIN operation and uses the data to calculate
some important results.

2. Your business logic performs amix of SELECT, INSERT, UPDATE and DELETE statements.

3. You need to setup test datain (possibly much) more than two tables to get reasonable initial data
for the methods you want to test.

The DbUnit extension considerably simplifies the setup of a database for testing purposes and allows
you to verify the contents of a database after performing a series of operations. It can be installed
likethis:

pear install phpunit/DbUnit

Supported Vendors for Database Testing

DbUnit currently supports MySQL, PostgreSQL, Oracle and SQLite. Through Zend Framework
[http://framework.zend.com] or Doctrine 2 [http://www.doctrine-project.org] integrations it has ac-
cess to other database systems such as IBM DB2 or Microsoft SQL Server.

Difficulties in Database Testing

There isagood reason why all the examples on unit testing do not include interactions with the data-
base: these kind of tests are both complex to setup and maintain. While testing against your database
you need to take care of the following variables:

* The database schema and tables

* Inserting the rows required for the test into these tables

* Verifying the state of the database after your test has run
* Cleanup the database for each new test

Because many database APIs such as PDO, MySQL.i or OCI8 are cumbersome to use and verbose in
writing doing these steps manually is an absolute nightmare.

Test code should be as short and precise as possible for several reasons:

* You do not want to modify considerable amount of test code for little changes in your production
code.

* You want to be able to read and understand the test code easily, even months after writing it.

Additionally you have to realize that the database is essentially a global input variable to your code.
Two testsin your test suite could run against the same database, possibly reusing data multiple times.
Failuresin one test can easily affect the result of the following tests making your testing experience
very difficult. The previously mentioned cleanup step is of major importance to solve the “database
isaglobal input” problem.

90

http://framework.zend.com
http://framework.zend.com
http://www.doctrine-project.org
http://www.doctrine-project.org

Database Testing

DbUnit helpsto simplify all these problems with database testing in an elegant way.

What PHPUnit cannot help you with is the fact that database tests are very slow compared to tests not
using the database. Depending on how large the interactions with your database are your tests could
run a considerable amount of time. However if you keep the amount of data used for each test small
and try to test as much code using non-database tests you can easily get away in under a minute even
for large test suites.

The Doctrine 2 project [http://www.doctrine-project.org]'s test suite, for example, currently has atest
suite of about 1000 tests where nearly half of them accesses the database and still runsin 15 seconds
against aMySQL database on a standard desktop computer.

The four stages of a database test

In his book on xUnit Test Patterns Gerard Meszaros lists the four stages of a unit-test:
1. Set up fixture
2. Exercise System Under Test
3. Verify outcome
4. Teardown
What isa Fixture?

A fixture describes the initial state your application and database are in when you
execute atest.

Testing the database requires you to hook into at | east the setup and teardown to clean-up and write the
required fixture data into your tables. However the database extension has good reason to revert the
four stages in a database test to resemble the following workflow that is executed for each single test:

1. Clean-Up Database
Since there is always a first test that runs against the database you do not know exactly if there is

aready data in the tables. PHPUnNIt will execute a TRUNCATE against all the tables you specified
to reset their statusto empty.

2. Set up fixture

PHPUnit will then iterate over al thefixture rows specified and insert them into their respectivetables.

3-5. Run Test, Verify outcome and Teardown

After the database isreset and loaded with itsinitia state the actual test is executed by PHPUnit. This
part of the test code does not require awareness of the Database Extension at all, you can go on and
test whatever you like with your code.

In your test use a special assertion called assert Dat aSet sEqual () for verification purposes,
however thisis entirely optional. This feature will be explained in the section “ Database Assertions’.

Configuration of a PHPUnIt Database Test-
Case

Usually when using PHPUnit your testcases would extend the PHPUni t _ Fr amewor k_Test Case
classin the following way:

91

http://www.doctrine-project.org
http://www.doctrine-project.org

Database Testing

requi re_once "PHPUni t/ Framewor k/ Test Case. php";

cl ass MyTest extends PHPUnit_Framewor k_Test Case

{
public function testCal cul ate()
{
$t hi s->assert Equal s(2, 1 + 1);
}
}

If you want to test code that works with the Database Extension the setup is a bit more complex and
you have to extend a different abstract TestCase requiring you to implement two abstract methods
get Connecti on() andget Dat aSet () :

requi re_once "PHPUni t/ Ext ensi ons/ Dat abase/ Test Case. php";

cl ass MyCuest bookTest extends PHPUnit_Ext ensi ons_Dat abase_Test Case

{
/**
* @eturn PHPUnit Extensi ons_Dat abase DB | Dat abaseConnecti on
*/
public function getConnection()
{
$pdo = new PDO('sqglite::menmory:');
return $this->createDef aul t DBConnecti on($pdo, ':nmenory:');
}
/**
* @eturn PHPUni t Ext ensi ons_Dat abase Dat aSet | Dat aSet
*/
public function getDataSet ()
{
return $thi s->createFl at XM_Dat aSet (di rnane(__FILE_).'/_fil es/guest book-seed. xm
}
}

Implementing get Connecti on()

To alow the clean-up and fixture loading functionalities to work the PHPUnit Database Extension
requires access to a database connection abstracted across vendors through the PDO library. It isim-
portant to note that your application does not need to be based on PDO to use PHPUnit's database
extension, the connection is merely used for the clean-up and fixture setup.

In the previous example we create an in-memory Sqlite connection and pass it to the cre-
at eDef aul t DBConnect i on method which wraps the PDO instance and the second parame-
ter (the database-name) in a very simple abstraction layer for database connections of the type
PHPUni t _Ext ensi ons_Dat abase_ DB | Dat abaseConnect i on.

The section “Using the Database Connection” explains the API of this interface and how you can
make the best use of it.

Implementing get Dat aSet ()

The get Dat aSet () method defines how the initial state of the database should look before each
test isexecuted. The state of a database is abstracted through the concepts DataSet and DataT able both
being represented by theinterfaces PHPUni t _Ext ensi ons_Dat abase_Dat aSet _| Dat aSet

and PHPUni t _Ext ensi ons_Dat abase_Dat aSet | Dat aTabl e. The next section will de-
scribein detail how these concepts work and what the benefits are for using them in database testing.

For the implementation we only need to know that theget Dat aSet () method iscalled onceduring
set Up() to retrieve the fixture data-set and insert it into the database. In the example we are using

92

Database Testing

afactory method cr eat eFl at XM_Dat aSet ($f i | enane) that represents a data-set through an
XML representation.

What about the Database Schema (DDL)?

PHPUnNit assumes that the database schemawith all itstables, triggers, sequences and viewsis created
before atest isrun. This meansyou as devel oper have to make sure that the database is correctly setup
before running the suite.

There are several means to achieve this pre-condition to database testing.

1. If you are using a persistent database (not Sglite Memory) you can easily setup the database once
with tools such as phpMyAdmin for MySQL and re-use the database for every test-run.

2. If you are using libraries such as Doctrine 2 [http://www.doctrine-project.org] or Propel [http://
www.propelorm.org/] you can use their APIs to create the database schema you need once before
you run the tests. Y ou can utilize PHPUnit's Bootstrap and Configuration [http://www.phpunit.de/
manual/current/en/textui.html] capabilities to execute this code whenever your tests are run.

Tip: Use your own Abstract Database TestCase

From the previous implementation example you can easily see that get Connect i on() method is
pretty static and could be re-used in different database test-cases. Additionally to keep performance
of your tests good and database overhead low you can refactor the code a little bit to get a generic
abstract test case for your application, which still allows you to specify a different data-fixture for
each test case:

requi re_once "PHPUni t/ Ext ensi ons/ Dat abase/ Test Case. php";

abstract class MyApp_Tests_Dat abaseTest Case ext ends PHPUni t _Ext ensi ons_Dat abase_Test Case

{
/1 only instantiate pdo once for test clean-up/fixture |oad
static private $pdo = nul | ;
/1 only instantiate PHPUnit_Extensi ons_Dat abase_DB_| Dat abaseConnecti on once per test
private $conn = null;
final public function getConnection()
{
if ($this->conn === null) {
if (self::$pdo == null) {
sel f::$pdo = new PDO('sqglite::menmory:"');
}
$t hi s->conn = $t hi s- >cr eat eDef aul t DBConnecti on(sel f:: $pdo, ':nmenory:');
}
return $this->conn;
}
}

This has the database connection hardcoded in the PDO connection though. PH-
PUnit has another awesome feature that could make this testcase even more
generic. If you use the XML Configuration [http://www.phpunit.de/manual/current/en/
appendixes.configuration.html#appendixes.configuration.php-ini-constants-variables] you could
make the database connection configurable per test-run. First let's create a “ phpunit.xml” file in our
tests/ directory of the application that looks like:

<?xm version="1.0" encodi ng="UTF-8" ?>
<phpuni t >
<php>
<var nanme="DB_DSN' val ue="nysql : dbnanme=nmyguest book; host =l ocal host" />

93

http://www.doctrine-project.org
http://www.doctrine-project.org
http://www.propelorm.org/
http://www.propelorm.org/
http://www.propelorm.org/
http://www.phpunit.de/manual/current/en/textui.html
http://www.phpunit.de/manual/current/en/textui.html
http://www.phpunit.de/manual/current/en/textui.html
http://www.phpunit.de/manual/current/en/appendixes.configuration.html#appendixes.configuration.php-ini-constants-variables
http://www.phpunit.de/manual/current/en/appendixes.configuration.html#appendixes.configuration.php-ini-constants-variables
http://www.phpunit.de/manual/current/en/appendixes.configuration.html#appendixes.configuration.php-ini-constants-variables

Database Testing

<var name="DB_USER' val ue="user" />
<var name="DB_PASSWD' val ue="passwd" />
<var nanme="DB_DBNAME" val ue="nyguest book" />
</ php>
</ phpuni t >

We can now modify our test-case to ook like:

abstract class CGeneric_Tests_Dat abaseTest Case extends PHPUnit Ext ensi ons_Dat abase_Test Ca

{
/1 only instantiate pdo once for test clean-up/fixture |oad
static private $pdo = nul|;
/1 only instantiate PHPUnit_Extensi ons_Dat abase_DB | Dat abaseConnecti on once per test
private $conn = null;
final public function getConnection()
{
if ($this->conn === null) {
if (self::$pdo == null) {
sel f::$pdo = new PDO($GLOBALS[' DB DSN'], $GLOBALS[' DB USER], $G.OBALS|
}
$t hi s->conn = $t hi s- >cr eat eDef aul t DBConnecti on(sel f:: $pdo, $G.OBALS[' DB_DBNA
}
return $this->conn;
}
}

Wecan now run the databasetest suite using different configurationsfrom the command-lineinterface:

user @eskt op> phpunit --configuration devel oper-a.xm MTests/
user @eskt op> phpunit --configuration devel oper-b.xm MTests/

The possibility to run the database tests against different database targets easily is very important if
you are developing on the development machine. If several developers run the database tests against
the same database connection you can easily experience test-failures because of race-conditions.

Understanding DataSets and DataTables

A central concept of PHPUnit's Database Extension are DataSets and DataTables. Y ou should try to
understand this simple concept to master database testing with PHPUnit. The DataSet and DataTable
are an abstraction layer around your database tables, rows and columns. A simple APl hides the un-
derlying database contents in an object structure, which can aso be implemented by other non-data-
base sources.

This abstraction is necessary to compare the actual contents of a database against the expected con-
tents. Expectations can be represented as XML, YAML, CSV files or PHP array for example. The
DataSet and DataT able interfaces enable the comparison of this conceptually different sources, emu-
lating relational database storage in a semantically similar approach.

A workflow for database assertions in your tests then consists of three simple steps:
» Specify one or more tablesin your database by table name (actual dataset)

« Specify the expected dataset in your preferred format (YAML, XML, ..)

o Assert that both dataset representations equal each other.

Assertions are not the only use-case for the DataSet and DataTable in PHPUnit's Database Extension.
As shown in the previous section they also describe the initial contents of a database. Y ou are forced
to define afixture dataset by the Database TestCase, which is then used to:

94

Database Testing

» Delete all the rows from the tables specified in the dataset.

» Write all therowsin the data-tables into the database.

Available Implementations

There are three different types of datasets/datatables:
* File-Based DataSets and DataT ables

* Query-Based DataSet and DataTable

* Filter and Composition DataSets and DataT ables

Thefile-based datasets and tables are generally used for theinitial fixture and to describe the expected
state of the database.

Flat XML DataSet

Themost common dataset iscalled Flat XML. Itisavery smplexml format where atag inside theroot
node<dat aset > represents exactly one row in the database. The tags name equalsthetableto insert
the row into and an attribute represents the column. An example for a smple guestbook application
could look like this:

<?xm version="1.0" ?>
<dat aset >
<guest book i d="1" conten
<guest book i d="2" conten
</ dat aset >

"Hel | 0 buddy!" user="joe" created="2010-04-24 17:15:23" />
"

t=
t= like it!" user="nancy" created="2010-04-26 12:14:20" />

Thisis obviously easy to write. Here <guest book> is the table name where two rows are inserted

(LT

into each with four columns “id”, “content”, “user” and “created” with their respective values.
However this simplicity comes at a cost.

From the previous example it isn't obvious how you would specify an empty table. You can insert a
tag with no attributes with the name of the empty table. A flat xml file for an empty guestbook table
would then look like:

<?xm version="1.0" ?>
<dat aset >

<guest book />
</ dat aset >

The handling of NULL values with the flat xml dataset istedious. A NULL valueis different than an
empty string value in amost any database (Oracle being an exception), something that is difficult to
describe in the flat xml format. Y ou can represent a NULL's value by omitting the attribute from the
row specification. If our guestbook would alow anonymous entries represented by aNULL valuein
the user column, a hypothetical state of the guestbook table could look like:

<?xm version="1.0" ?>
<dat aset >
<guest book id="1" conten
<guest book i d="2" conten
</ dat aset >

"Hel | o buddy!" user="joe" created="2010-04-24 17:15:23" />
"

=
t= like it!" created="2010-04-26 12:14:20" />

In this case the second entry is posted anonymously. However this leads to a serious problem with
column recognition. During dataset equality assertions each dataset has to specify what columns a
table holds. If an attributeisNULL for all the rows of adata-table, how would the Database Extension
know that the column should be part of the table?

95

Database Testing

The flat xml dataset makes a crucia assumption now, defining that the attributes on the first defined
row of atable define the columns of this table. In the previous example this would mean “id”, “con-
tent”, “user” and “created” are columns of the guestbook table. For the second row where “user” is
not defined aNULL would be inserted into the database.

When the first guestbook entry is deleted from the dataset only “id”, “content” and “created” would
be columns of the guestbook table, since “user” is not specified.

To use the Flat XML dataset effectively when NULL values are relevant the first row of each table
must not contain any NULL value and only successive rows are allowed to omit attributes. This can
be awkward, since the order of the rowsis arelevant factor for database assertions.

Inturn, if you specify only asubset of thetable columnsin the Flat XML dataset all the omitted values
are set to their default values. Thiswill lead to errorsif one of the omitted columnsisdefined as“NOT
NULL DEFAULT NULL".

In conclusion | can only advise using the Flat XML datasets if you do not need NULL values.

You can create a flat xml dataset instance from within your Database TestCase by calling the
cr eat eFl at X Dat aSet ($f i | enanme) method:

cl ass MyTest Case extends PHPUni t _Ext ensi ons_Dat abase_Test Case

{
public function getDataSet ()
{
return $thi s->createFl at Xl Dat aSet (' nyFl at Xml Fi xture. xm ') ;
}
}

XML DataSet

There is another more structured XML dataset, which is a bit more verbose to write but avoids the
NULL problems of the Flat XML dataset. Inside the root node <dat aset > you can specify <t a-
bl e>, <col um>, <r ow>, <val ue>and<nul | /> tags. Anequivalent dataset to the previously
defined Guestbook Flat XML looks like:

<?xm version="1.0" ?>
<dat aset >
<t abl e nane="guest book" >
<col um>i d</ col um>
<col utm>cont ent </ col um>
<col um>user </ col um>
<col um>cr eat ed</ col utm>
<r ow>
<val ue>1</val ue>
<val ue>Hel | o buddy! </ val ue>
<val ue>j oe</ val ue>
<val ue>2010- 04- 24 17:15: 23</ val ue>

</ r ow>
<r ow>
<val ue>2</val ue>
<value>l like it!</val ue>
<null />
<val ue>2010- 04- 26 12: 14: 20</ val ue>
</ row>
</t abl e>

</ dat aset >

Any defined <t abl e> has a name and requires a definition of all the columns with their names. It
can contain zero or any positive number of nested <r ow> elements. Defining no <r ow> element
meansthe tableisempty. The<val ue>and<nul | /> tagshave to be specified in the order of the
previously given <col umm> elements. The<nul | / > tag obviously meansthat thevalueisNULL.

96

Database Testing

You can create a xml dataset instance from within your Database TestCase by calling the
creat eXnm Dat aSet ($f i | enane) method:

cl ass MyTest Case extends PHPUni t _Ext ensi ons_Dat abase_Test Case

{
public function getDataSet ()
{
return $this->createXM.Dat aSet (' myXm Fi xture.xm');
}
}

MySQL XML DataSet

This new XML format is specific to the MySQL database server [http://www.mysgl.com]. Support
for it was added in PHPUnit 3.5. Filesin this format can be generated using the mysql dunp [http://
dev.mysqgl.com/doc/refman/5.0/en/mysgldump.html] utility. Unlike CSV datasets, which nysql -
dunp aso supports, a single file in this XML format can contain data for multiple tables. Y ou can
create afilein thisformat by invoking nysql dunp like so:

nysql dunp --xm -t -u [usernanme] --password=[password] [database] > /path/to/file.xm

This file can be used in your Database TestCase by «cdling the
cr eat eMySQLXM.Dat aSet ($f i | enanme) method:

cl ass MyTest Case extends PHPUnit _Ext ensi ons_Dat abase_Test Case

{
public function getDataSet ()
{
return $this->createMySQLXM.Dat aSet (' /path/to/file.xm"');
}
}

YAML DataSet

New with PHPUnit 3.4 isthe ahility to specify adataset in the popular Y AML format. For thisto work
you haveto install PHPUnit 3.4 from PEAR with its optional Symfony Y AML dependency. Y ou can
then writea Y AML dataset for the guestbook example:

guest book:

id 1

content: "Hello buddy!"

user: "joe"

created: 2010-04-24 17:15:23

id: 2

content: "I like it!"

user:

created: 2010-04-26 12:14:20

This is simple, convient AND it solves the NULL issue that the similar Flat XML dataset has. A
NULL in YAML isjust the column name without no value specified. An empty string is specified
ascol uml: "".

The YAML Dataset has no factory method on the Database TestCase currently, so you haveto instan-
tiate it manually:

requi re_once "PHPUni t/ Ext ensi ons/ Dat abase/ Dat aSet / Yani Dat aSet . php" ;

cl ass Yanl Guest bookTest extends PHPUni t _Ext ensi ons_Dat abase_Test Case

97

http://www.mysql.com
http://www.mysql.com
http://dev.mysql.com/doc/refman/5.0/en/mysqldump.html
http://dev.mysql.com/doc/refman/5.0/en/mysqldump.html
http://dev.mysql.com/doc/refman/5.0/en/mysqldump.html

Database Testing

{
protected function getDataSet ()
{
return new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Yanl Dat aSet (
dirnane(__FILE_)."/ _files/guestbook.yn"
IE
}
}

CSV DataSet

Another file-based dataset is based on CSV files. Each table of the dataset is represented as asingle
CSV file. For our guestbook example we would define a guestbook-table.csv file:

i d; content;user;created
"Hel | 0 buddy!";"joe";"2010-04-24 17:15: 23"
"

1
2, like it!""nancy";"2010-04-26 12:14: 20"

Whilethisisvery convenient for editing with Excel or OpenOffice, you cannot specify NULL values
with the CSV dataset. An empty column will lead to the database default empty value being inserted
into the column.

Y ou can create a CSV DataSet by calling:
require_once ' PHPUnI t/ Ext ensi ons/ Dat abase/ Dat aSet / CsvDat aSet . php' ;

cl ass CsvQuest bookTest extends PHPUnit Extensi ons_Dat abase_Test Case

{
protected function get DataSet ()
{
$dat aSet = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _CsvDat aSet () ;
$dat aSet - >addTabl e(' guest book', dirname(__FILE)."/_files/guestbook.csv");
return $dat aSet;
}
}

Array DataSet

Thereis no Array based DataSet in PHPUnit's Database Extension (yet), but we can implement our
own easily. Our guestbook example should look like:

cl ass ArrayCuest bookTest extends PHPUnit_Ext ensi ons_Dat abase_Test Case

{
protected function get Dat aSet ()
{
return new MyApp_DbUni t _ArrayDat aSet (array(
' guest book' => array(
array('id =>1, 'content' => 'Hello buddy!', 'user' => 'joe', 'created
array('id => 2, 'content' =>"'1 like it!", ‘user' => null, 'created'
),
));
}
}

A PHP DataSet has obvious advantages over all the other file-based datasets:
e PHP Arrays can obviously handle NULL values.
» Youwon't need additional files for assertions and can specify them directly in the TestCase.

For thisdataset likethe Flat XML, CSV and Y AML DataSetsthe keys of the first specified row define
the table's column names, in the previous case thiswould be “id”, “content”, “user” and “created”.

98

Database Testing

The implementation for this Array DataSet is simple and straightforward:

require_once 'PHPUnit/Uil/Filter.php';

requi re_once ' PHPUni t/ Ext ensi ons/ Dat abase/ Dat aSet / Abst r act Dat aSet . php' ;

requi re_once ' PHPUni t / Ext ensi ons/ Dat abase/ Dat aSet / Def aul t Tabl el t er at or. php' ;
requi re_once ' PHPUnIi t / Ext ensi ons/ Dat abase/ Dat aSet / Def aul t Tabl e. php' ;

requi re_once ' PHPUni t / Ext ensi ons/ Dat abase/ Dat aSet / Def aul t Tabl eMet aDat a. php' ;

PHPUNit Wil _Filter::addFileToFilter(__FILE , "PHPUNIT);

cl ass MyApp_DbUnit _ArrayDat aSet extends PHPUnit_Ext ensi ons_Dat abase_Dat aSet _Abst ract Dat a
{

/**

* @ar array

*/

protected $tables = array();

/**
* @aram array $data
*/
public function

{

_construct (array $dat a)

foreach ($data AS $t abl eNane => $rows) {
$col ums = array();
if (isset($rows[0])) {
$col utms = array_keys($rows[0]);

}

$net aDat a = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Def aul t Tabl eMet aDat a($t a
$t abl e = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Def aul t Tabl e($net aDat a) ;

foreach ($rows AS $row) {
$t abl e- >addRow($r ow) ;

}
$t hi s- >t abl es[$t abl eNane] = $t abl e;

}

protected function createlterator($reverse = FALSE)

{
}

return new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Def aul t Tabl el t er at or ($t hi s->t abl e

public function get Tabl e($t abl eNane)

{
if (!lisset($this->tables[$tableNanme])) {
t hrow new | nval i dAr gument Excepti on("$tabl eName is not a table in the current

}

return $this->tabl es[$t abl eNane] ;

}
Query (SQL) DataSet

For database assertions you do not only need the file-based datasets but also a Query/SQL based
Dataset that contains the actual contents of the database. This is where the Query DataSet shines:

$ds = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Quer yDat aSet ($t hi s- >get Connection());
$ds- >addTabl e(' guest book') ;

Adding atable just by nameisan implicit way to define the data-table with the following query:

99

Database Testing

$ds = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Quer yDat aSet ($t hi s- >get Connection());
$ds- >addTabl e(' guest book', ' SELECT * FROM guest book');

Y ou can make use of this by specifying arbitrary queriesfor your tables, for example restricting rows,
column or adding ORDER BY clauses:

$ds = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Quer yDat aSet ($t hi s- >get Connection());
$ds- >addTabl e(' guest book', ' SELECT id, content FROM guestbook ORDER BY created DESC);

The section on Database Assertions will show some more details on how to make use of the Query
DataSet.

Database (DB) Dataset

Accessing the Test Connection you can automatically create a DataSet that consists of all the tables
with their content in the database specified as second parameter to the Connections Factory method.

Y ou can either create adataset for the complete databaseasshownint est Guest book() , or restrict
it to a set of specified table names with a whitelist as shown int est Fi | t er edGuest book()

method.
cl ass MySql Guest bookTest extends PHPUnit_Ext ensi ons_Dat abase_Test Case
{
/**
* @eturn PHPUnit_Ext ensi ons_Dat abase_DB_| Dat abaseConnecti on
>/
public function getConnection()
{
$dat abase = ' ny_dat abase’;
$pdo = new PDQ(' nysql:..."', S$user, S$password);
return $t hi s->creat eDef aul t DBConnecti on($pdo, $dat abase);
}
public function testQuestbook()
{
$dat aSet = $t hi s- >get Connecti on()->creat eDat aSet () ;
I
}
public function testFilteredGuestbook()
{
$t abl eNanes = array(' guest book');
$dat aSet = $t hi s- >get Connecti on() - >cr eat eDat aSet ($t abl eNanes) ;
I
}
}

Replacement DataSet

| have been talking about NULL problemswith the Flat XML and CSV DataSet, but thereisasdlightly
complicated workaround to get both types of datasets working with NULLs.

The Replacement DataSet is a decorator for an existing dataset and allows you to replace values in
any column of the dataset by another replacement value. To get our guestbook example working with
NULL values we specify thefilelike:

<?xm version="1.0" ?>
<dat aset >
<guest book i d="1" conten
<guest book i d="2" conten
</ dat aset >

"Hel | o buddy!" user="joe" created="2010-04-24 17:15:23" />
"

t=
t= like it!" user="##NULL##" created="2010-04-26 12: 14: 20"

100

Database Testing

We then wrap the Flat XML DataSet into a Replacement DataSet:
require_once ' PHPUnI t / Ext ensi ons/ Dat abase/ Dat aSet / Repl acenent Dat aSet . php' ;

cl ass Repl acenent Test extends PHPUnit_Ext ensi ons_Dat abase_Test Case

{
public function getDataSet ()
{
$ds = $t hi s->creat eFl at Xm Dat aSet (' nyFl at Xnl Fi xture. xm');
$rds = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Repl acenent Dat aSet ($ds) ;
$rds- >addFul | Repl acenent (' ##NULL##' , null);
return $rds;
}
}

DataSet Filter

If you have alarge fixture file you can use the DataSet Filter for white- and blacklisting of tables and
columns that should be contained in a sub-dataset. This is especially handy in combination with the
DB DataSet to filter the columns of the datasets.

cl ass DataSetFilterTest extends PHPUni t Extensi ons_Dat abase_Test Case

{

public function testlncludeFilteredGuestbook()

{
$t abl eNames = array(' guest book');
$dat aSet = $t hi s- >get Connecti on()->creat eDat aSet () ;
$filterDataSet = new PHPUnit_ Ext ensi ons_Dat abase_Dat aSet Dat aSet Fi | t er ($dat aSet)
$filterDataSet->addl ncl udeTabl es(array(' guest book'));
$fi | terDat aSet - >set | ncl udeCol ummsFor Tabl e(' guest book', array('id', 'content'));
I

}

public function testExcludeFilteredGuestbook()

{
$t abl eNames = array(' guest book');
$dat aSet = $t hi s- >get Connecti on()->creat eDat aSet () ;
$filterDataSet = new PHPUnit_Ext ensi ons_Dat abase_Dat aSet Dat aSet Fi | t er ($dat aSet)
$filterDataSet->addExcl udeTabl es(array('foo', 'bar', 'baz')); // only keep the g
$fi | t er Dat aSet - >set Excl udeCol ummsFor Tabl e(' guest book', array('user', 'created'))
I

}

}

NOTE Y ou cannot use both exclude and include column filtering on the sametabl e,
only on different ones. Plus it is only possible to either white- or blacklist tables,
not both of them.

Composite DataSet

The composite DataSet is very useful for aggregating several already existing datasets into a single
dataset. When several datasets contain the same table the rows are appended in the specified order.
For example if we have two datasets fixturel.xml:

<?xm version="1.0" ?>
<dat aset >

<guest book id="1" content="Hell o buddy!" user="joe" created="2010-04-24 17:15:23" />
</ dat aset >

and fixture2.xml:

101

Database Testing

<?xm version="1.0" ?>
<dat aset >

<guest book id="2" content="I1 like it!" user="##NULL##" created="2010-04-26 12: 14: 20"
</ dat aset >

Using the Composite DataSet we can aggregate both fixture files:

cl ass ConpositeTest extends PHPUni t _Ext ensi ons_Dat abase_Test Case
{
public function getDataSet ()
{
$ds1
$ds2

$t hi s- >creat eFl at Xml Dat aSet (' fi xturel. xm");
$t hi s- >creat eFl at Xml Dat aSet (' fi xture2. xm");

$conposi teDs = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Conposi t eDat aSet () ;
$conposi t eDs- >addDat aSet ($ds1) ;
$conposi t eDs- >addDat aSet ($ds2) ;

return $conpositeDs;

Beware of Foreign Keys
During Fixture SetUp PHPUnit's Database Extension inserts the rows into the database in the order

they are specified in your fixture. If your database schema uses foreign keys this means you have to
specify the tables in an order that does not cause foreign key constraints to fail.

Implementing your own DataSets/DataTables

To understand the internals of DataSets and DataTables, lets have alook at the interface of a DataSet.
You can skip this part if you do not plan to implement your own DataSet or DataTable.

i nterface PHPUNni t _Ext ensi ons_Dat abase_Dat aSet _| Dat aSet ext ends |t erator Aggregat e

{
public function get Tabl eNanmes();
public function get Tabl eMet aDat a($t abl eNan®) ;
public function get Tabl e($t abl eNarne) ;
public function assert Equal s(PHPUni t _Ext ensi ons_Dat abase_Dat aSet _| Dat aSet $ot her) ;
public function getReverselterator();
}

The public interface is used internally by the asser t Dat aSet sEqual () assertion on the Data
base TestCase to check for dataset quality. Fromthe | t er at or Aggr egat e interface the | DataSet
inheritstheget | t er at or () method to iterate over all tables of the dataset. The additional reverse
iterator method is required to successfully truncate the tables in reverse of the specified order.

To understand the need for a reverse iterator think of a two tables (TableA and
TableB) where TableB holds a foreign key on a column of TableA. If for fixture
setup arow isinserted into TableA and then a dependant record into TableB, then
it is obvious that for deleting all the tables contents the reverse order run you into
trouble with foreign key constraints.

Depending on theimplementation different approaches are taken to add tableinstancesto adataset. For
exampl e, tables are added internally during construction from the sourcefile in all file-based datasets
such as Yam Dat aSet , Xnl Dat aSet or FI at Xl Dat aSet .

A tableis also represented by the following interface:

102

Database Testing

interface PHPUnit Extensi ons_Dat abase Dat aSet | Tabl e

{

public function get Tabl eMet aDat a();

public function get RowCount () ;

public function getVal ue($row, $colum);

public function get Row($row);

public function assert Equal s(PHPUni t _Ext ensi ons_Dat abase_Dat aSet _| Tabl e $ot her);
}

Except the get Tabl eMet aDat a() method it is pretty self-explainatory. The methods are
used are al required for the different assertions of the Database Extension that are explained
in the next chapter. The get Tabl eMet aDat a() method has to return an implementation of
the PHPUni t _Ext ensi ons_Dat abase_Dat aSet | Tabl eMet aDat a interface, which de-
scribes the structure of the table. It holds information on:

* Thetable name
« Anarray of column-names of thetable, ordered by their appearance in the result-set.
* Anarray of the primary-key columns.

This interface also has an assertion that checks if two instances of Table Metadata equal each other,
which isused by the data-set equality assertion.

The Connection API

There are three interesting methods on the Connection interface which has to be returned from the
get Connect i on() method on the Database TestCase:

interface PHPUNni t Extensi ons_Dat abase_ DB | Dat abaseConnecti on

{
public function createDataSet (Array $tabl eNames = NULL);
public function createQueryTabl e($result Name, $sql);
public function get RowCount ($t abl eNane, $whered ause = NULL);
/1

}

1. Thecr eat eDat aSet () method creates a Database (DB) DataSet as described in the DataSet
implementations section.

cl ass ConnectionTest extends PHPUnit_Ext ensi ons_Dat abase_Test Case

{
public function testCreateDataSet()
{
$t abl eNames = array(' guest book');
$dat aSet = $t hi s- >get Connecti on()->creat eDat aSet () ;
}
}

2. Thecr eat eQuer yTabl e() method can be used to create instances of aQueryTable, givethem
aresult name and SQL query. Thisis a handy method when it comes to result/table assertions as
will be shown in the next section on the Database Assertions API.

cl ass ConnectionTest extends PHPUnit_ Extensi ons_Dat abase_Test Case

{
public function testCreateQueryTabl e()
{
$t abl eNanes = array(' guest book');
$queryTabl e = $t hi s- >get Connecti on() - >cr eat eQuer yTabl e(' guest book', ' SELECT *
}

103

Database Testing

}

3. The get RowCount () method is a convienent way to access the number of rowsin atable, op-
tionally filtered by an additional where clause. This can be used with asimple equality assertion:

cl ass ConnectionTest extends PHPUnit_Ext ensi ons_Dat abase_Test Case

{

public function testGet RowCount ()

{
}

$t hi s- >assert Equal s(2, $thi s->get Connecti on()->get RowCount (' guest book'));

Database Assertions API

For atesting tool the Database Extension surely provides some assertionsthat you can useto verify the
current state ot the database, tablesand the row-count of tables. Thissection describesthisfunctionality
in detail:

Asserting the Row-Count of a Table

It is often helpful to check if atable contains a specific amount of rows. You can easily achieve this
without additional glue code using the Connection API. Say we wanted to check that after insertion
of arow into our guestbook we not only have the two initia entries that have accompanied usin all
the previous example, but athird one:

cl ass Guest bookTest extends PHPUni t Ext ensi ons_Dat abase_Test Case

{

public function testAddEntry()

{

$t hi s- >assert Equal s(2, $thi s->get Connecti on()->get RowCount (' guest book'),

$guest book = new GQuest book();
$guest book- >addEnt ry(“suzy", "Hello world!");

$t hi s- >assert Equal s(3, $thi s->get Connecti on()->get RowCount (' guest book'),

Asserting the State of a Table

The previous assertion is helpful, but we surely want to check the actual contents of the table to verify
that all the values were written into the correct columns. This can be achieved by atable assertion.

For thiswe would define aQuery Table instance which derivesits content from atable name and SQL
guery and compare it to a File/Array Based Data Set:

cl ass GQuest bookTest extends PHPUnit Extensions_Dat abase Test Case

{

public function testAddEntry()

{

$guest book = new Cuest book();
$guest book- >addEnt ry("suzy", "Hello world!");

$queryTabl e = $t hi s- >get Connecti on() - >cr eat eQuer yTabl e(
' guest book', ' SELECT * FROM guest book'
);
$expect edTabl e = $t hi s->cr eat eFl at Xl Dat aSet (" expect edBook. xm ")
- >get Tabl e(" guest book") ;

104

"Pre-Co

"I nsert

Database Testing

$t hi s- >assert Tabl esEqual ($expect edTabl e, $queryTabl e);
}
Now we have to write the expectedBook.xml Flat XML file for this assertion:

<?xm version="1.0" ?>

<dat aset >
<guest book id="1" content="Hell o buddy!" user="joe" created="2010-04-24 17:15: 23"
<guest book id="2" content="1 like it!" user="nancy" created="2010-04-26 12:14: 20"
<guest book i d="3" content=

</ dat aset >

This assertion would only pass on exactly one second of the universe though, on 2010-05-01
21:47:08. Dates pose aspecia problem to database testing and we can circumvent the failure by omit-
ting the “created” column from the assertion.

The adjusted expectedBook.xml Flat XML filewould probably haveto look like thefollowing to make
the assertion pass:

<?xm version="1.0" ?>

<dat aset >
<guest book id="1" content="Hell o buddy!" user="joe" />
<guest book id="2" content="1 like it!" user="nancy" />
<guest book id="3" content="Hello world!" user="suzy" />

</ dat aset >

We haveto fix up the Query Table call:

$queryTabl e = $t hi s- >get Connecti on() - >cr eat eQuer yTabl e(
' guest book', ' SELECT id, content, user FROM guestbook’

DE

Asserting the Result of a Query

Y ou can also assert the result of complex queries with the Query Table approach, just specify aresult
name with a query and compare it to a dataset:

cl ass Conpl exQueryTest extends PHPUnit _Extensi ons_Dat abase_Test Case

{
public function testConpl exQuery()
{
$queryTabl e = $t hi s->get Connecti on() - >creat eQuer yTabl e(
"myConpl exQuery', ' SELECT conpl exQuery..."
)
$expect edTabl e = $t hi s- >creat eFl at Xn Dat aSet (" conpl exQuer yAssertion. xm ")
- >get Tabl e(" myConpl exQuery");
$t hi s- >assert Tabl esEqual ($expect edTabl e, $queryTabl e);
}
}

Asserting the State of Multiple Tables

For sure you can assert the state of multiple tables at once and compare a query dataset against afile
based dataset. There are two different ways for DataSet assertions.

1. You can use the Database (DB) DataSet from the Connection and compare it to a File-Based
DataSet.

cl ass Dat aSet AssertionsTest extends PHPUnit Extensi ons_Dat abase Test Case

105

"Hel l o worl d!'" user="suzy" created="2010-05-01 21:47:08"

/>
/>
/

Database Testing

{
public function testCreateDataSet Assertion()
{
$dat aSet = $t hi s- >get Connecti on() - >creat eDat aSet (array(' guest book'));
$expect edDat aSet = $t hi s- >cr eat eFl at Xm Dat aSet (' guest book. xm ') ;
$t hi s- >assert Dat aSet sEqual ($expect edDat aSet, $dat aSet);
}
}

2. You can construct the DataSet on your own:

cl ass Dat aSet AssertionsTest extends PHPUnit Extensi ons_Dat abase_ Test Case

{
public function testMnual Dat aSet Asserti on()
{
$dat aSet = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Quer yDat aSet () ;
$dat aSet - >addTabl e(' guest book', ' SELECT id, content, user FROM guestbook'); //
$expect edDat aSet = $t hi s->cr eat eFl at X Dat aSet (' guest book. xm ') ;
$t hi s- >assert Dat aSet sEqual ($expect edDat aSet, $dat aSet);
}
}

Frequently Asked Questions

Will PHPUniIt (re-)create the database schema for each
test?

No, PHPU it requires all database objects to be available when the suite is started. The Database,
tables, sequences, triggers and views have to be created before you run the test suite.

Doctrine 2 [http://www.doctrine-project.org] or eZ Components [http://www.ezcomponents.org] have
powerful toolsthat allowsyou to create the database schemafrom pre-defined datastructures, however
these have to be hooked into the PHPUnIt extension to allow automatic database re-creation before
the compl ete test-suiteis run.

Since each test completely cleans the database you are not even required to re-create the database for
each test-run. A permanently available database works perfectly.

Am | required to use PDO in my application for the
Database Extension to work?

No, PDO is only required for the fixture clean- and set-up and for assertions. Y ou can use whatever
database abstraction you want inside your own code.

What can | do, when | get a “Too much Connections”
Error?

If you do not cachethe PDO instancethat is created from the TestCase get Connect i on() method
the number of connections to the database isincreasing by one or more with each database test. With
default configuration MySql only allows 100 concurrent connections other vendors also have maxi-
mum connection limits.

The SubSection “Use your own Abstract Database TestCase” shows how you can prevent this error
from happening by using a single cached PDO instancein al your tests.

106

http://www.doctrine-project.org
http://www.doctrine-project.org
http://www.ezcomponents.org
http://www.ezcomponents.org

Database Testing

How to handle NULL with Flat XML / CSV Datasets?

Do not do this. Instead, you should use either the XML or the YAML DataSets.

107

Chapter 9. Incomplete and Skipped
Tests

Incomplete Tests

When you are working on anew test case class, you might want to begin by writing empty test methods
such as:

public function testSonething()

{
}

to keep track of the tests that you have to write. The problem with empty test methods is that they are
interpreted as a success by the PHPUnit framework. This misinterpretation leads to the test reports
being useless -- you cannot seewhether atest isactually successful or just not yet implemented. Calling
$t hi s->fail () intheunimplemented test method does not help either, since then the test will be
interpreted asafailure. Thiswould bejust aswrong asinterpreting an unimplemented test asa success.

If we think of a successful test as a green light and a test falure as a red light, we
need an additional yellow light to mark a test as being incomplete or not yet implemented.
PHPUni t _Franmewor k_I nconpl et eTest is a marker interface for marking an exception that
is raised by a test method as the result of the test being incomplete or currently not implemented.
PHPUni t _Framewor k_I nconpl et eTest Err or isthe standard implementation of this inter-
face.

Example 9.1, “Marking a test as incomplete” shows a test case class, Sanpl eTest , that contains
one test method, t est Sonet hi ng() . By calling the convenience method mar kTest | ncom
pl et e() (whichautomatically raisessan PHPUni t _Fr amewor k_| nconpl et eTest Err or ex-
ception) in the test method, we mark the test as being incomplete.

Example 9.1. Marking atest asincomplete

<?php
cl ass Sanpl eTest extends PHPUnit_Framewor k_Test Case

{

public function testSomething()

{

$t hi s- >assert True(TRUE, ' This should al ready work."');

$t hi s- >mar kTest | nconpl et e(
"This test has not been inplenmented yet.

An incomplete test is denoted by an | in the output of the PHPUnit command-line test runner, as
shown in the following example:

PHPUnit 3.7.0 by Sebastian Bergmann.
|

Time: 0 seconds, Menory: 3.75M

108

Incomplete and Skipped Tests

There was 1 inconplete test:

1) Sanpl eTest: :t est Sonet hi ng
This test has not been inplenmented yet.

/ home/ sb/ Sanpl eTest . php: 12

OK, but inconplete or skipped tests!

Tests: 1, Assertions: 1, Inconplete: 1.phpunit --verbose Sanpl eTest
PHPUnit 3.7.0 by Sebastian Bergmann.

|

Time: 0 seconds, Menory: 3.75M

There was 1 inconplete test:

1) Sanpl eTest: :t est Sonet hi ng
This test has not been inplenmented yet.

/ home/ sb/ Sanpl eTest . php: 12

OK, but inconplete or skipped tests!
Tests: 1, Assertions: 1, Inconplete: 1.

Table 9.1, “API for Incomplete Tests’ shows the API for marking tests asincompl ete.

Table9.1. API for Incomplete Tests

Method Meaning

voi d markTest | nconpl et e() Marks the current test as incomplete.

voi d markTest | nconpl ete(string Marks the current test as incomplete using
$nessage) $nessage as an explanatory message.

Skipping Tests

Not all tests can berun in every environment. Consider, for instance, a database abstraction layer that
has several driversfor the different database systems it supports. The tests for the MySQL driver can
of course only be run if aMySQL server is available.

Example 9.2, “Skipping a test” shows a test case class, Dat abaseTest , that contains one test
method, t est Connecti on() . Inthetest caseclass set Up() template method we check whether
the MySQL.i extension is available and use the mar kTest Ski pped() method to skip the test if
it isnot.

Example 9.2. SKkipping a test

<?php
cl ass Dat abaseTest extends PHPUnit_Franewor k_Test Case
{
protected function set Up()
{
if (!extension_|loaded('nmysqgli')) {
$t hi s- >mar kTest Ski pped(
' The MySQLi extension is not avail abl e.
)
}
}

public function testConnection()

{

109

Incomplete and Skipped Tests

}

?>

A test that has been skipped is denoted by an S in the output of the PHPUnNit command-linetest runner,
as shown in the following example:

PHPUnit 3.7.0 by Sebastian Ber gnann.
S

Time: 0 seconds, Menory: 3.75M
There was 1 skipped test:

1) Dat abaseTest::test Connection
The MySQLi extension is not avail able.

/ hone/ sb/ Dat abaseTest . php: 9

OK, but inconplete or skipped tests!

Tests: 1, Assertions: 0, Skipped: 1.phpunit --verbose DatabaseTest
PHPUnit 3.7.0 by Sebastian Ber gnann.

S

Time: 0 seconds, Menory: 3.75M

There was 1 skipped test:

1) Dat abaseTest::test Connection
The MySQLi extension is not avail able.

/ hone/ sb/ Dat abaseTest . php: 9

OK, but inconplete or skipped tests!
Tests: 1, Assertions: 0, Skipped: 1.

Table 9.2, “API for Skipping Tests” shows the API for skipping tests.

Table 9.2. API for Skipping Tests

Method Meaning

voi d mar kTest Ski pped() Marks the current test as skipped.

voi d mar kTest Ski pped(string Marks the current test as skipped using $nes-
$nessage) sage as an explanatory message.

Skipping Tests using @requires

In addition to the above methods it is also possible to use the @ equi r es annotation to express
common preconditions for atest case.

Table 9.3. Possible @requires usages

Type Possible Values Examples Another example

PHP Any PHP versioniden- |@requiresPHP5.3.3 | @requires PHP 5.4-dev
tifier

PHPUNI t Any PHPUnit version | @requires PHPUnit @requires PHPUnit 3.7
identifier 3.6.3

110

Incomplete and Skipped Tests

ccessible

Type Possible Values Examples Another example
function Any valid parame- @requires function @requires function
ter to function_exists |imap_open ReflectionM ethod::setA¢
[http://php.net/
function_exists]
ext ensi on Any extension name | @requires extension @requires extension

mysqli

curl

Example 9.3. Skipping test cases using @requires

<?php

cl ass Dat abaseTest extends PHPUnit_Franewor k_Test Case

public function testConnection()

{
{
}
}
?>

If you are using syntax that doesn't compilewith acertain PHP Version ook into the xml configuration
for version dependent includes in the section called “ Test Suites’

111

http://php.net/function_exists
http://php.net/function_exists
http://php.net/function_exists

Chapter 10. Test Doubles

Gerard Meszaros introduces the concept of Test Doubles in [Meszaros2007] like this:

Sometimesit isjust plain hard to test the system under test (SUT) becauseit depends
on other components that cannot be used in the test environment. This could be
because they aren't available, they will not return the results needed for the test or
because executing them would have undesirable side effects. In other cases, our test
strategy requires us to have more control or visibility of the internal behavior of
the SUT.

When we are writing atest in which we cannot (or chose not to) use areal depend-
ed-on component (DOC), we can replace it with a Test Double. The Test Double
doesn't have to behave exactly like the real DOC; it merely has to provide the same
API asthereal one so that the SUT thinksit isthereal one!

—Gerard Meszaros

Theget Mock($cl assNanme) method provided by PHPUnit can be used in atest to automatically
generate an object that can act as atest double for the specified original class. Thistest double object
can be used in every context where an object of the original classis expected.

By default, all methods of the original class are replaced with a dummy implementation that just
returns NULL (without calling the original method). Usingthewi | | ($t hi s->r et ur nVal ue())
method, for instance, you can configure these dummy implementations to return a value when called.

Limitations

Please note that f i nal , pri vat e and st at i ¢ methods cannot be stubbed or mocked.
They areignored by PHPUnit's test double functionality and retain their original behavior.

Warning

Please pay attention to the fact that the parameters managing has been changed. The previous
implementation clones al object parameters. It did not allow to check whether the same
object was passed to method or not. Example 10.14, “ Testing that a method gets called once
and with the identical object as was passed” shows where the new implementation could be
useful. Example 10.15, “ Create amock object with cloning parameters enabled” shows how
to switch back to previous behavior.

Stubs

The practice of replacing an object with atest doublethat (optionally) returns configured return values
isrefered to as stubbing. Y ou can use astub to "replace areal component on which the SUT depends
so that the test has a control point for the indirect inputs of the SUT. This allows the test to force the
SUT down paths it might not otherwise execute”.

Example 10.2, “Stubbing a method call to return a fixed value” shows how to stub method
cals and set up return values. We first use the get Mock() method that is provided by the
PHPUni t _Fr amewor k_Test Case classto set up astub object that looks like an object of Sone-
G ass (Example 10.1, “The class we want to stub”). We then use the Fluent Interface [http://
martinfowler.com/bliki/Fluentlnterface.html] that PHPUniIt provides to specify the behavior for the
stub. In essence, this means that you do not need to create several temporary objects and wire them
together afterwards. Instead, you chain method calls as shown in the example. This leads to more
readable and "fluent" code.

Example 10.1. The class we want to stub

<?php

112

http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html

Test Doubles

cl ass Soned ass

{
public function doSoret hi ng()
{
}

}

?>

Example 10.2. Stubbing a method call to return afixed value

<?php
requi re_once ' Soned ass. php';

cl ass StubTest extends PHPUnit_Franewor k_Test Case

{
public function testStub()
{
$stub = $t hi s->get Mock(' Somed ass');
$st ub- >expect s($t hi s- >any())
- >met hod(' doSonet hi ng')
->wi || ($this->returnValue('foo'));
$t hi s- >assert Equal s(' foo', $stub->doSonet hi ng());
}
}
?>

"Behind the scenes’, PHPUnNIt automatically generates a new PHP class that implements the desired
behavior when the get Mock () method is used. The generated test double class can be configured
through the optional arguments of the get Mock () method.

» By default, all methods of the given class are replaced with a test double that just returns NULL
unless areturn valueis configured usingwi | | ($t hi s->r et urnVal ue()), for instance.

» When the second (optional) parameter is provided, only the methods whose names are in the array
are replaced with a configurable test double. The behavior of the other methods is not changed.
Providing NULL as the parameter means that no methods will be replaced.

» Thethird (optional) parameter may hold a parameter array that is passed to the original class con-
structor (which is not replaced with a dummy implementation by default).

» The fourth (optional) parameter can be used to specify a class name for the generated test double
class.

 Thefifth (optional) parameter can be used to disable the call to the original class' constructor.
» Thesixth (optional) parameter can be used to disable the call to the original class clone constructor.

» The seventh (optional) parameter can be used to disable __aut ol oad() during the generation
of the test double class.

Alternatively, the Mock Builder API can be used to configure the generated test double class. Exam-
ple 10.3, “Using the Mock Builder API can be used to configure the generated test double class’ shows
an example. Here's alist of the methods that can be used with the Mock Builder's fluent interface:

113

Test Doubles

» set Met hods(array $nethods) can be caled on the Mock Builder object to specify the
methods that are to be replaced with a configurable test double. The behavior of the other methods
is not changed. If you call set Met hods(NULL) , then no methods will be replaced.

» setConstructorArgs(array $args) can be caled to provide a parameter array that is
passed to the original class' constructor (which is not replaced with a dummy implementation by
default).

» set MockC assName($nane) can be used to specify aclass namefor the generated test double
class.

» di sabl eOri gi nal Construct or () canbe used to disable the call to the original class con-
structor.

» di sabl eOri gi nal A one() canbeusedto disablethecall totheoriginal class clone construc-
tor.

» di sabl eAut ol oad() canbeusedtodisable _aut ol oad() duringthe generation of the test
double class.

Example 10.3. Using the Mock Builder API can be used to configure the
generated test double class

<?php
requi re_once ' Soned ass. php'

cl ass StubTest extends PHPUnit_Franewor k_Test Case

{
public function testStub()
{
$stub = $thi s- >get MockBui | der (' SoneCl ass')
->di sabl eOri gi nal Constructor ()
- >get Mock();
$st ub- >expect s($t hi s- >any())
->npet hod(' doSonet hi ng')
->wi || ($this->returnValue('foo'));
$t hi s- >assert Equal s(' foo', $stub->doSonet hi ng());
}
}
?>

Sometimes you want to return one of the arguments of a method call (unchanged) as the result of a
stubbed method call. Example 10.4, “ Stubbing a method call to return one of the arguments’ shows
how you can achieve thisusing r et ur nAr gunent () instead of r et ur nVal ue() .

Example 10.4. Stubbing a method call to return one of the arguments

<?php
requi re_once ' Somed ass. php'

cl ass StubTest extends PHPUnit_Franewor k_Test Case

{
public function testReturnArgunment Stub()

{

114

Test Doubles

$stub = $thi s- >get Mock(' Soned ass')

$st ub- >expect s($t hi s->any())
- >met hod(' doSonet hi ng')
->W | | ($t his->returnArgunent (0))

$t hi s- >assert Equal s(' foo', $stub->doSonet hi ng('foo'))

$t hi s- >assert Equal s(' bar', $stub->doSonet hi ng(' bar'))

}

?>

When testing afluent interface, it is sometimes useful to have a stubbed method return a reference to
the stubbed object. Example 10.5, “ Stubbing a method call to return a reference to the stub object”
shows how you can user et ur nSel f () to achivevethis.

Example 10.5. Stubbing a method call to return areferenceto the stub object

<?php
requi re_once ' Somed ass. php'

cl ass StubTest extends PHPUnit_Franewor k_Test Case

{
public function testReturnSelf()
{
$stub = $t hi s->get Mock(' Soned ass')
$st ub- >expect s($t hi s->any())
- >met hod(' doSonet hi ng')
->wi |l ($this->returnSelf())
$t hi s- >assert Same($st ub, $st ub- >doSonet hi ng());
}
}
?>

Sometimes a stubbed method should return different values depending on a predefined list of argu-
ments. You can use r et ur nVal ueMap() to create a map that associates arguments with corre-
sponding return values. See Example 10.6, “ Stubbing a method call to return the value from a map”
for an example.

Example 10.6. Stubbing a method call to return the value from a map

<?php
requi re_once ' Somed ass. php'

cl ass StubTest extends PHPUnit_Franewor k_Test Case

{
public function testReturnVal ueMapStub()

{

$stub = $t hi s->get Mock(' Soned ass')

115

Test Doubles

$map = array(
array('a', 'b'
array('e', 'f'

)

c', 'd),
g, h)

$st ub- >expect s($t hi s- >any())
- >met hod(' doSonet hi ng')
->wi || ($thi s->returnVal ueMap($nmap));

$t hi s- >assert Equal s('d', $stub->doSonething('a', '"b', 'c'))
$t hi s- >assert Equal s(' h', $stub->doSonething('e', '"f', 'g"))

}

?>

When the stubbed method call should return a calculated value instead of afixed one (seer et ur n-
Val ue()) or an (unchanged) argument (seer et ur nAr gunent ()), youcanuser et urnCal | -
back() to have the stubbed method return the result of a callback function or method. See Exam-
ple 10.7, “ Stubbing a method call to return a value from a callback” for an example.

Example 10.7. Stubbing a method call to return a value from a callback

<?php
requi re_once ' Sonmed ass. php';

cl ass StubTest extends PHPUnit Franewor k Test Case

{
public function testReturnCall backStub()
{
$stub = $t hi s- >get Mock(' Soned ass');
$st ub- >expect s($t hi s->any())
- >met hod(' doSonet hi ng')
->Wi || ($this->returnCall back('str_rotl13"'))
$t hi s- >assert Equal s(' f bzrguvat', $stub->doSonet hi ng(' sonething'));
}
}
?>

A simpler aternative to setting up a callback method may be to specify alist of desired return val-
ues. You can do thiswith theonConsecut i veCal | s() method. See Example 10.8, “ Stubbing a
method call to return alist of valuesin the specified order” for an example.

Example 10.8. Stubbing a method call to return alist of valuesin the specified
order

<?php
requi re_once ' Somed ass. php'

cl ass StubTest extends PHPUnit_Franewor k_Test Case

{
public function testOnConsecutiveCall sStub()

{

116

Test Doubles

$stub = $thi s- >get Mock(' Soned ass')

$st ub- >expect s($t hi s->any())
- >met hod(' doSonet hi ng')
->wi | | ($t hi s->onConsecutiveCalls(2, 3, 5 7));

$t hi s- >assert Equal s(2, $stub->doSonet hing());
$t hi s- >assert Equal s(3, $stub->doSonet hi ng());
$t hi s- >assert Equal s(5, $stub->doSonet hi ng());

}

?>

Instead of returning a value, a stubbed method can also raise an exception. Example 10.9, “ Stubbing
amethod call to throw an exception” shows how to uset hr owExcept i on() todo this.

Example 10.9. Stubbing a method call to throw an exception

<?php
requi re_once ' Somed ass. php';

cl ass StubTest extends PHPUnit_Franewor k_Test Case

{
public function testThrowExceptionStub()
{
$stub = $t hi s->get Mock(' Somed ass');
$st ub- >expect s($t hi s- >any())
- >net hod(' doSonet hi ng')
->wi || ($t hi s->t hr owExcepti on(new Exception))
$st ub- >doSonet hi ng() ;
}
}
?>

Alternatively, you can write the stub yourself and improve your design along the way. Widely used
resources are accessed through a single facade, so you can easily replace the resource with the stub.
For example, instead of having direct database calls scattered throughout the code, you have asingle
Dat abase object, an implementor of thel Dat abase interface. Then, you can create astub imple-
mentation of | Dat abase and use it for your tests. You can even create an option for running the
testswith the stub database or the real database, so you can use your tests for both local testing during
development and integration testing with the real database.

Functionality that needs to be stubbed out tends to cluster in the same object, improving cohesion.
By presenting the functionality with asingle, coherent interface you reduce the coupling with the rest
of the system.

Mock Objects

The practice of replacing an object with atest double that verifies expectations, for instance asserting
that a method has been called, is refered to as mocking.

Y ou can use a mock object "as an observation point that is used to verify the indirect outputs of the
SUT asitisexercised. Typicaly, the mock object also includesthe functionality of atest stubinthat it

117

Test Doubles

must return valuesto the SUT if it hasn't already failed the tests but the emphasisis on the verification
of the indirect outputs. Therefore, a mock object is ot more than just atest stub plus assertions; it is
used a fundamentally different way".

Here is an example: suppose we want to test that the correct method, updat e() in our example, is
called on an object that observes another object. Example 10.10, “The Subject and Observer classes
that are part of the System under Test (SUT)” shows the code for the Subj ect and Cbser ver
classes that are part of the System under Test (SUT).

Example 10.10. The Subject and Observer classesthat are part of the System
under Test (SUT)

<?php
cl ass Subj ect

{

protected $observers = array();

public function attach(CObserver $observer)

{
$t hi s- >observers[] = $observer
}
public function doSonet hi ng()
{
$this->notify(' sonething');
}
public function doSonet hi ngBad()
{
foreach ($this->observers as $observer) {
$observer->reportError (42, 'Sonething bad happened', $this);
}
}
protected function notify($argunent)
{
foreach ($this->observers as $observer) {
$obser ver - >updat e($ar gunent)
}
}
}
cl ass Observer
{
public function update($argunent)
{
}
public function reportError($errorCode, $errorMessage, Subject $subject)
{
}
}
?>

118

Test Doubles

Example 10.11, “Testing that a method gets called once and with a specified argument” shows how
to use amock object to test the interaction between Subj ect and Cbser ver objects.

Wefirst use the get Mock () method that is provided by the PHPUni t _Fr amewor k_Test Case
class to set up a mock object for the Obser ver . Since we give an array as the second (optional)
parameter for the get Mock() method, only the updat e() method of the Cbser ver classisre-
placed by a mock implementation.

Example 10.11. Testing that a method gets called once and with a specified
argument

<?php
cl ass Subj ect Test extends PHPUnit_Franmewor k_Test Case
{
public function testCbserversAreUpdat ed()
{
$observer = $this->get Mock(' Goserver', array('update'));
$observer - >expect s($t hi s->once())
->net hod(' update')
->wi t h($t hi s- >equal To("' sonet hing'));
$subj ect = new Subj ect;
$subj ect - >at t ach($observer) ;
$subj ect - >doSonet hi ng() ;
}
}
?>

Thewi t h() method can take any number of arguments, corresponding to the number of parameters
to the method being mocked. Y ou can specify more advanced constraints on the method argument
than a simple match.

Example 10.12. Testing that a method gets called with a number of arguments
constrained in different ways

<?php
cl ass Subj ect Test extends PHPUnit_Framewor k_Test Case
{

public function testErrorReported()

{

$observer = $this->get Mock(' Cbserver', array('reportError'));

$obser ver - >expect s($t hi s->once())
->met hod(' reportError')
->wi t h($t hi s- >gr eat er Than(0),
$t hi s->stringContains(' Sonething'),
$t hi s- >anyt hing());

119

Test Doubles

$subj ect = new Subj ect ;
$subj ect - >at t ach($observer) ;

$subj ect - >doSonet hi ngBad() ;

}

?>

Table4.3,“Constraints’ showsthe constraintsthat can be applied to method argumentsand Table 10.1,
“Matchers’ shows the matchers that are available to specify the number of invocations.

Table10.1. Matchers

M atcher

M eaning

PHPUNi t _Franmewor k_MockCbj ect _
Mat cher _Anyl nvokedCount any()

Returns a matcher that matches when the method
it is evaluated for is executed zero or more
times.

PHPUNni t _Framewor k_MockQbj ect _
Mat cher | nvokedCount never ()

Returns a matcher that matches when the method
it isevaluated for is never executed.

PHPUNni t _Framewor k_MockObj ect _
Mat cher | nvokedAt Least Once
at Least Once()

Returns a matcher that matches when the method
it isevaluated for is executed at |east once.

PHPUNi t _Framewor k_MckObj ect _
Mat cher _I nvokedCount once()

Returns a matcher that matches when the method
itisevaluated for is executed exactly once.

PHPUNi t _Franmewor k_MockCbj ect _
Mat cher _I nvokedCount exact!y(int
$count)

Returns a matcher that matches when the method
it is evaluated for is executed exactly $count
times.

PHPUNni t _Framewor k_MockQbj ect _
Mat cher | nvokedAt | ndex at (i nt
$i ndex)

Returns a matcher that matches when the method
itisevauated for isinvoked at the given $i n-
dex.

The get MockFor Abst ract C ass() method returns a mock object for an abstract class. All
abstract methods of the given abstract class are mocked. This allows for testing the concrete methods

of an abstract class.

Example 10.13. Testing the concr ete methods of an abstract class

<?php
abstract class AbstractCl ass

{

public function concreteMethod()

{

return $this->abstract Method();

}

public abstract function abstract Met hod();

}

cl ass Abstract Cl assTest extends PHPUnit _Framewor k_Test Case

{

public function testConcreteMethod()

{

$stub = $t hi s- >get MockFor Abstract O ass(' Abstractd ass');

$st ub- >expect s($t hi s- >any())

- >met hod(' abst ract Met hod')
->wi || ($this->returnVal ue(TRUE)) ;

120

Test Doubles

$t hi s- >assert True($st ub- >concr et eMet hod()) ;

}

?>

Example 10.14. Testing that a method gets called once and with the identical

object aswas passed
<?php
cl ass FooTest extends PHPUnit Framewor k_Test Case
{
public function testldentical ObjectPassed()
{
$expect edoj ect = new stdd ass
$mock = $t hi s- >get Mock(' stdCl ass', array('foo'));
$nock- >expect s($t hi s->once())
->nmet hod(' fo0")
->wi t h($t hi s->i denti cal To($expect edObj ect));
$nock- >f oo($expect edbj ect) ;
}
}
?>

Example 10.15. Create a mock object with cloning parameter s enabled

<?php
cl ass FooTest extends PHPUnit_Framewor k_Test Case
{
public function testldentical ObjectPassed()
{
$cl oneArgunents = true
$nock = $thi s->get Mock(
'stdd ass'
array(),
array(),
FALSE
TRUE,
TRUE,
$cl oneAr gunent s
IE
$nock = $t hi s->get MockBui | der (' st dCl ass') - >enabl eAr gunent Cl oni ng() - >get Mock()
}
}
?>

Stubbing and Mocking Web Services

When your application interactswith aweb service you want to test it without actually interacting with
the web service. To make the stubbing and mocking of web services easy, the get Mock Fr on\é -
dl () canbeusedjust likeget Mock() (seeabove). Theonly differenceisthat get MockFr omAs -
dl () returnsastub or mock based on aweb service description in WSDL and get Mock() returns
astub or mock based on a PHP class or interface.

121

Test Doubles

Example 10.16, “ Stubbing a web service” shows how get MockFr omAédl () can be used to stub,
for example, the web service described in Googl eSear ch. wsdl .

Example 10.16. Stubbing a web service

<?php
cl ass Googl eTest extends PHPUnit _Franmewor k_Test Case

{

public function testSearch()
{
$googl eSearch = $t hi s- >get MockFr omAsdl (
' Googl eSearch. wsdl ', ' Googl eSear ch'

)i

$directoryCategory = new Stdd ass;
$di rect oryCat egory->ful | Vi ewabl eName = '"';
$di rect or yCat egor y- >speci al Encoding = '';

$el emrent = new St dd ass;

$el enent - >sunmary = "' ;

$el ement->URL = ' http://ww. phpunit.de/";
$el enent - >sni ppet = '...";

$el ement->title = ' PHPUni t </ b>";

$el enent - >cachedSi ze = ' 11k';
$el enent - >r el at edl nf or mat i onPresent = TRUE;
$el enent - >host Nanme = ' www. phpuni t. de';

$el enent - >di rect oryCat egory = $direct oryCat egory;
$el enent - >directoryTitle = '';

$result = new Stdd ass;

$resul t - >docunent Fil tering = FALSE;

$resul t->searchComments = '';

$resul t - >esti mat edTot al Resul t sCount = 378000;
$resul t->esti mat el sExact = FALSE;
$result->resul tEl enents = array($el enent);
$resul t->searchQuery = 'PHPUni t';
$result->startlndex = 1;

$resul t->endl ndex = 1;

$resul t->searchTips = '"';
$result->directoryCategories = array();
$resul t->searchTine = 0.248822;

$googl eSear ch- >expect s($t hi s- >any())
->net hod(' doGoogl eSear ch')
->wi || ($this->returnVal ue($result));

$t hi s- >assert Equal s(

$resul t,

$googl eSear ch- >doGoogl eSear ch(
' 00000000000000000000000000000000" ,
" PHPUNni t ',
0,
i,
FALSE,

FALSE,

122

Test Doubles

}

?>

Mocking the Filesystem

visStream [https://github.com/mikey179/vfsStream] is a stream wrapper [http://www.php.net/
streamg] for avirtual filesystem [http://en.wikipedia.org/wiki/Virtual_file_system] that may be help-
ful in unit tests to mock the real filesystem.

Toinstall vfsStream, the PEAR channel (pear . bovi go. or g) that isused for its distribution needs
to be registered with the local PEAR environment:

pear channel -di scover pear. bovi go.org
This has to be done only once. Now the PEAR Installer can be used to install vfsStream:

pear install bovigo/vfsStream beta

Example 10.17, “ A classthat interactswith thefilesystem” showsaclassthat interactswith thefilesys-
tem.

Example 10.17. A classthat interacts with the filesystem

<?php
cl ass Exanpl e

{
protected $id;

protected $directory;

public function _ construct ($id)

{
$this->id = $id;

}

public function setDirectory($directory)

{
$this->directory = $directory . DI RECTORY_SEPARATOR . $this->id;
if (!file_exists($this->directory)) {

mkdi r ($t hi s->di rectory, 0700, TRUE);

}

}

}?>

Without avirtual filesystem such as vfsStream we cannot test theset Di r ect or y() method iniso-
lation from external influence (see Example 10.18, “ Testing aclassthat interactswith thefilesystem™).

Example 10.18. Testing a classthat interacts with the filesystem

<?php
requi re_once ' Exanpl e. php'

cl ass Exanpl eTest extends PHPUnit_Framewor k_Test Case
{

protected function set Up()
{
if (file_exists(dirnane(__FILE) . "/id")) {
rodi r(dirname(__FILE) . '/id");

123

https://github.com/mikey179/vfsStream
https://github.com/mikey179/vfsStream
http://www.php.net/streams
http://www.php.net/streams
http://www.php.net/streams
http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/Virtual_file_system

Test Doubles

}
}
public function testDirectorylsCreated()
{
$exanpl e = new Exanple('id');
$thi s->assert Fal se(file_exists(dirname(__FILE) . '"/id));
$exanpl e->setDirectory(dirname(__FILE));
$thi s->assert True(file_exists(dirname(__FILE) . '/id"));
}
protected function tearDown()
{
if (file_exists(dirnane(__FILE) . "/id")) {
rdir(dirnanme(__FILE__) . '/id");
}
}
}
?>

The approach above has several drawbacks:

» Aswithany external resource, there might be intermittent problemswith the filesystem. This makes
tests interacting with it flaky.

* Intheset Up() andt ear Down() methods we have to ensure that the directory does not exist
before and after the test.

» When the test execution terminates beforethet ear Down() method isinvoked the directory will
stay in the filesystem.

Example 10.19, “Mocking the filesystem in atest for a class that interacts with the filesystem” shows
how vfsStream can be used to mock thefilesystemin atest for aclassthat interactswith the filesystem.

Example 10.19. Mocking the filesystem in a test for a class that interacts with
thefilesystem

<?php
requi re_once 'vfsStrean vfsStream php';
requi re_once ' Exanpl e. php';

cl ass Exanpl eTest extends PHPUnit_Framewor k_Test Case

{
public function setUp()
{
vfsStreamWN apper::register();
vf sSt reamN apper: : set Root (new vfsStreanDi rectory(' exanpleDir'));
}
public function testDirectorylsCreated()
{
$exanpl e = new Exanple('id");
$t hi s- >assert Fal se(vfsStreanm/ apper: : get Root ()->hasChild('id));
$exanpl e->setDirectory(vfsStream :url (' exanpleDir'));
$t hi s- >assert True(vfsStrean¥ apper: : get Root ()->hasChild('id"));
}
}
?>

This has several advantages:

124

Test Doubles

The test itself is more concise.

vfsStream gives the test developer full control over what the filesystem environment looks like to
the tested code.

Since the filesystem operations do not operate on the real filesystem anymore, cleanup operations
inat ear Down() method are no longer required.

125

Chapter 11. Testing Practices

Y ou can alwayswrite moretests. However, you will quickly find that only afraction
of the tests you can imagine are actually useful. What you want is to write tests that
fail even though you think they should work, or tests that succeed even though you
think they should fail. Another way to think of it isin cost/benefit terms. Y ou want
to write tests that will pay you back with information.

—Erich Gamma

During Development

When you need to make a change to the internal structure of the software you are working on
to make it easier to understand and cheaper to modify without changing its observable behav-
ior, a test suite is invauable in applying these so called refactorings [http://martinfowler.com/bli-
ki/DefinitionOf Refactoring.html] safely. Otherwise, you might not notice the system breaking while
you are carrying out the restructuring.

The following conditions will help you to improve the code and design of your project, while using
unit tests to verify that the refactoring's transformation steps are, indeed, behavior-preserving and do
not introduce errors:

1. All unit tests run correctly.

2. The code communicates its design principles.

3. The code contains no redundancies.

4. The code contains the minimal number of classes and methods.

When you need to add new functionality to the system, write the tests first. Then, you will be done
developing when the test runs. This practice will be discussed in detail in the next chapter.

During Debugging

When you get adefect report, your impulse might beto fix the defect asquickly as possible. Experience
shows that this impulse will not serve you well; it is likely that the fix for the defect causes another
defect.

Y ou can hold your impulse in check by doing the following:
1. Verify that you can reproduce the defect.

2. Find the smallest-scale demonstration of the defect in the code. For example, if a number appears
incorrectly in an output, find the object that is computing that number.

3. Write an automated test that fails now but will succeed when the defect is fixed.
4. Fix the defect.

Finding the smallest reliable reproduction of the defect gives you the opportunity to realy examine
the cause of the defect. The test you write will improve the chances that when you fix the defect, you
really fix it, because the new test reduces the likelihood of undoing the fix with future code changes.
All the tests you wrote before reduce the likelihood of inadvertently causing a different problem.

Unit testing offers many advantages.

» Testing gives code authors and reviewers confidence that patches produce the
correct results.

126

http://martinfowler.com/bliki/DefinitionOfRefactoring.html
http://martinfowler.com/bliki/DefinitionOfRefactoring.html
http://martinfowler.com/bliki/DefinitionOfRefactoring.html

Testing Practices

 Authoring testcases is a good impetus for devel opers to discover edge cases.

» Testing provides a good way to catch regressions quickly, and to make sure that
no regression will be repeated twice.

* Unit tests provide working examples for how to use an APl and can significantly
aid documentation efforts.

Overadl, integrated unit testing makes the cost and risk of any individual change
smaller. It will allow the project to make[...] major architectural improvements...]
quickly and confidently.

—Benjamin Smedberg

127

Chapter 12. Test-Driven Development

Unit Tests are a vital part of several software development practices and processes such as Test-
First Programming, Extreme Programming [http://en.wikipedia.org/wiki/Extreme Programming],
and Test-Driven Development [http://en.wikipedia.org/wiki/Test-driven_development]. They also al-
low for Design-by-Contract [http://en.wikipedia.org/wiki/Design_by Contract] in programming lan-
guages that do not support this methodol ogy with language constructs.

Y ou can use PHPUnit to write tests once you are done programming. However, the sooner a test is
written after an error has been introduced, the more valuable the test is. So instead of writing tests
months after the code is "complete”, we can write tests days or hours or minutes after the possible
introduction of adefect. Why stop there? Why not writethetestsalittle before the possibleintroduction
of adefect?

Test-First Programming, whichispart of Extreme Programming and Test-Driven Development, builds
upon thisideaand takes it to the extreme. With today's computational power, we have the opportunity
to run thousands of tests thousands of times per day. We can use the feedback from al of these teststo
program in small steps, each of which carrieswith it the assurance of a new automated test in addition
to all the tests that have come before. The tests are like pitons, assuring you that, no matter what
happens, once you have made progress you can only fall so far.

When you first write the test it cannot possibly run, because you are calling on objects and methods
that have not been programmed yet. This might feel strange at first, but after a while you will get
used to it. Think of Test-First Programming as a pragmatic approach to following the object-oriented
programming principle of programming to an interface instead of programming to an implementation:
while you are writing the test you are thinking about the interface of the object you are testing -- what
doesthis object look like from the outside. When you go to make the test really work, you are thinking
about pure implementation. The interface is fixed by the failing test.

The point of Test-Driven Development [http://en.wikipedia.org/wiki/Test-
driven_development] is to drive out the functionality the software actually needs,
rather than what the programmer thinks it probably ought to have. The way it does
thisseemsat first counterintuitive, if not downright silly, but it not only makes sense,
it also quickly becomes anatural and elegant way to develop software.

—Dan North

What followsis necessarily an abbreviated introduction to Test-Driven Development. Y ou can explore
the topic further in other books, such as Test-Driven Devel opment [Beck2002] by Kent Beck or Dave
Astels A Practical Guideto Test-Driven Development [Astels2003].

BankAccount Example

In this section, we will look at the example of a class that represents a bank account. The contract
for the BankAccount class not only requires methods to get and set the bank account's balance, as
well as methods to deposit and withdraw money. It also specifies the following two conditions that
must be ensured:

» The bank account'sinitial balance must be zero.
» The bank account's balance cannot become negative.

We write the tests for the BankAccount class before we write the code for the class itself. We use
the contract conditions as the basis for the tests and name the test methods accordingly, as shown in
Example 12.1, “Tests for the BankAccount class’.

Example 12.1. Testsfor the BankAccount class

<?php

128

http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Design_by_Contract
http://en.wikipedia.org/wiki/Design_by_Contract
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development

Test-Driven Development

requi re_once ' BankAccount . php'

cl ass BankAccount Test extends PHPUnit_Franmewor k_Test Case

{
protected $ba
protected function set Up()
{
$t hi s->ba = new BankAccount
}
public function testBal ancelslnitiallyZero()
{
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());
}
public function testBal anceCannot BeconeNegati ve()
{
try {
$t hi s- >ba- >wi t hdr awivbney(1) ;
}
cat ch (BankAccount Exception $e) {
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());
return;
}
$this->fail();
}
public function testBal anceCannot BeconeNegati ve2()
{
try {
$t hi s- >ba- >deposi t Money(-1);
}
cat ch (BankAccount Exception $e) {
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());
return;
}
$this->fail();
}
}
?>

We now write the minimal amount of code needed for the first test, t est Bal ancel sl niti al -
| yZer o(), to pass. In our example this amounts to implementing the get Bal ance() method of
the Bank Account class, as shown in Example 12.2, “ Code needed for the testBalancel snitiallyZe-
ro() test to pass’.

Example 12.2. Code needed for the testBalancel sl nitiallyZero() test to pass

<?php
cl ass BankAccount

{

protected $bal ance = 0;

public function getBal ance()

{

return $this->bal ance

129

Test-Driven Development

}

?>

Thetest for the first contract condition now passes, but the tests for the second contract condition fail
because we have yet to implement the methods that these tests call.

PHPUnit 3.7.0 by Sebastian Bergmann.

Fatal error: Call to undefined method BankAccount::withdrawivbney()phpunit BankAccount Tes
PHPUnit 3.7.0 by Sebastian Bergmann.

Fatal error: Call to undefined method BankAccount::w t hdrawivbney()

For the tests that ensure the second contract condition to pass, we now need to implement thewi t h-
dr awlvbney(), deposi t Money(), and set Bal ance() methods, as shown in Example 12.3,
“The complete BankAccount class’. These methods are written in a such a way that they raise an
BankAccount Except i on whenthey are called with illegal values that would violate the contract
conditions.

Example 12.3. The complete BankAccount class

<?php
cl ass BankAccount

{

prot ected $bal ance = 0;

public function getBal ance()

{
}

return $this->bal ance

protected function setBal ance($bal ance)

if ($balance >= 0) {
$t hi s- >bal ance = $bal ance
} else {
t hr ow new BankAccount Excepti on

}
}
public function depositMney($bal ance)
{
$t hi s- >set Bal ance($t hi s- >get Bal ance() + $bal ance);
return $this->getBal ance();
}
public function wi thdrawvbney($bal ance)
{
$t hi s- >set Bal ance($t hi s- >get Bal ance() - $bal ance)
return $this->getBal ance();
}
}
?>

The tests that ensure the second contract condition now pass, too:

130

Test-Driven Development

PHPUnit 3.7.0 by Sebastian Bergmann.

Time: 0 seconds

K (3 tests, 3 assertions)phpunit BankAccount Test
PHPUnit 3.7.0 by Sebastian Bergmann.

Time: 0 seconds

K (3 tests, 3 assertions)

Alternatively, you can use the static assertion methods provided by the
PHPUNi t _Franmewor k_Assert class to write the contract conditions as design-by-
contract style assertions into your code, as shown in Example 124, “The BankAc-
count class with Design-by-Contract assertions’. When one of these assertions fails, an
PHPUNi t _Framewor k_AssertionFai | edError exception will be raised. With this ap-
proach, you write less code for the contract condition checks and the tests become more readable.
However, you add a runtime dependency on PHPUnit to your project.

Example 12.4. The BankAccount class with Design-by-Contract assertions

<?php
cl ass BankAccount

{

private $bal ance = 0;

public function getBal ance()

{
return $this->bal ance;

}

protected function setBal ance($bal ance)

{
PHPUNni t _Framewor k_Assert:: assert True($bal ance >= 0);
$t hi s- >bal ance = $bal ance;

}

public function depositMney($anount)

{
PHPUNi t _Framewor k_Assert:: assert True($anount >= 0);
$t hi s- >set Bal ance($t hi s- >get Bal ance() + $anount);
return $this->getBal ance();

}

public function w thdrawvbney($anount)

{
PHPUNi t _Framewor k_Assert::assert True($anount >= 0);
PHPUNi t _Framewor k_Assert:: assert True($t hi s- >bal ance >= $anount);
$t hi s- >set Bal ance($t hi s- >get Bal ance() - $anount);
return $this->getBal ance();

}

}
?>

131

Test-Driven Development

By writing the contract conditions into the tests, we have used Design-by-Contract to program the
BankAccount class. Wethenwrote, following the Test-First Programming approach, the code need-
ed to make the tests pass. However, we forgot to write tests that call set Bal ance() , deposi t -
Money(), and wi t hdr ambney () with lega values that do not violate the contract conditions.
We need a means to test our tests or at |east to measure their quality. Such ameansis the analysis of
code-coverage information that we will discuss next.

132

Chapter 13. Behaviour-Driven
Development

In [Astels2006], Dave Astels makes the following points:

» Extreme Programming [http://en.wikipedia.org/wiki/Extreme Programming] originaly had the
rule to test everything that could possibly break.

» Now, however, the practice of testing in Extreme Programming hasevolved into Test-Driven Devel-
opment [http://en.wikipedia.org/wiki/Test-driven_development] (see Chapter 12, Test-Driven De-
velopment).

» But thetoolsstill force developersto think in terms of tests and assertions instead of specifications.

Soif it's not about testing, what'sit about?

It's about figuring out what you are trying to do before you run off half-cocked to
try to do it. You write a specification that nails down a small aspect of behaviour
in a concise, unambiguous, and executable form. It's that simple. Does that mean
you write tests? No. It means you write specifications of what your code will have
to do. It means you specify the behaviour of your code ahead of time. But not far
ahead of time. In fact, just before you write the code is best because that's when you
have as much information at hand as you will up to that point. Like well done TDD,
you work in tiny increments... specifying one small aspect of behaviour at atime,
then implementing it.

When you realize that it's all about specifying behaviour and not writing tests, your
point of view shifts. Suddenly the idea of having a Test class for each of your pro-
duction classes is ridiculously limiting. And the thought of testing each of your
methods with its own test method (in a 1-1 relationship) will be laughable.
—Dave Astels

The focus of Behaviour-Driven Development [http://en.wikipedia.org/wi-
ki/Behavior_driven_development] is "the language and interactions used in the process of software
development. Behavior-driven developers use their native language in combination with the ubiqui-
tous language of Domain-Driven Design [http://en.wikipedia.org/wiki/Domain_driven_design] to de-
scribe the purpose and benefit of their code. This allows the developers to focus on why the code
should be created, rather than the technical details, and minimizes trandlation between the technical
language in which the code is written and the domain language spoken by the" domain experts.

The PHPUnit_ Extensions_Story TestCase class adds a story framework that
faciliates the definition of a Domain-Specific Language [http://en.wikipedia.org/wiki/Do-
main-specific_programming_language] for Behaviour-Driven Development. It can be installed like
this:

pear install phpunit/PHPUnit_Story
Inside a scenario, gi ven(), when(), and then() each represent a step. and() is

the same kind as the previous step. The following methods are declared abstract in
PHPUni t _Ext ensi ons_St ory_Test Case and need to be implemented:

* runG ven(&$worl d, $action, $argunents)

e runWien(&$worl d, $action, $argunents)

133

http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Behavior_driven_development
http://en.wikipedia.org/wiki/Behavior_driven_development
http://en.wikipedia.org/wiki/Behavior_driven_development
http://en.wikipedia.org/wiki/Domain_driven_design
http://en.wikipedia.org/wiki/Domain_driven_design
http://en.wikipedia.org/wiki/Domain-specific_programming_language
http://en.wikipedia.org/wiki/Domain-specific_programming_language
http://en.wikipedia.org/wiki/Domain-specific_programming_language

Behaviour-Driven Devel opment

* runThen(&$worl d, $action, $argunents)

BowlingGame Example

In this section, we will look at the example of a class that calculates the score for a game of bowling.
The rulesfor thisare asfollows:

e The game consists of 10 frames.

* In each framethe player has two opportunities to knock down 10 pins.

The score for aframeisthe total number of pins knocked down, plusbonusesfor strikes and spares.
» A spareiswhen the player knocks down al 10 pinsin two tries.
The bonus for that frame is the number of pins knocked down by the next roll.
A strikeis when the player knocks down all 10 pinson hisfirst try.
The bonus for that frame is the value of the next two balls rolled.

Example 13.1, “ Specification for the BowlingGame class’ shows how the above rules can be written
down as specification scenarios using PHPUni t _Ext ensi ons_St ory_Test Case.

Example 13.1. Specification for the BowlingGame class

<?php
requi re_once ' PHPUni t/ Ext ensi ons/ St ory/ Test Case. php'
requi re_once ' Bow i ngGane. php';

cl ass Bow i ngGanmeSpec extends PHPUnit_Extensions_Story_ Test Case
{

public function scoreForCutterGanel sO()
{
$t hi s->gi ven(' New gane')
->then(' Score should be', 0)

public function scoreForAll Onesl s20()
{
$t hi s->gi ven(' New gane')

->when(' Pl ayer rolls', 1)
->and(' Player rolls', 1)
->and(' Player rolls', 1)
->and(' Player rolls', 1)
->and(' Player rolls', 1)
->and(' Player rolls', 1)
->and(' Player rolls', 1)
->and(' Player rolls', 1)
->and(' Player rolls', 1)
->and(' Player rolls', 1)
->and(' Player rolls', 1)
->and(' Player rolls', 1)
->and(' Player rolls', 1)
->and(' Pl ayer rolls', 1)

134

Behaviour-Driven Devel opment

->and(' Pl ayer rolls', 1)
->and(' Pl ayer rolls', 1)
->and(' Pl ayer rolls', 1)
->and(' Pl ayer rolls', 1)
->and(' Pl ayer rolls', 1)

->and(' Pl ayer rolls', 1)
->then(' Score should be', 20);
}

/**
* @cenario
*/
public function scoreFor OneSpar eAnd3l s16()
{
$t hi s- >gi ven(' New gane')
->when(' Pl ayer rolls', 5)
->and(' Pl ayer rolls', 5)
->and(' Pl ayer rolls', 3)
->then(' Score should be', 16);
}

/‘k*

* @cenario

*/
public function scoreForOneStri keAnd3And4l s24()
{
$t hi s- >gi ven(' New gane')

->when(' Pl ayer rolls', 10)
->and(' Pl ayer rolls', 3)
->and(' Pl ayer rolls', 4)
->then(' Score should be', 24);

}

/**

* @cenario
*/
public function scoreForPerfect Ganel s300()
{
$t hi s- >gi ven(' New gane')
->when(' Pl ayer rolls', 10)
->and(' Pl ayer rolls', 10)
->and(' Pl ayer rolls', 10)
->and(' Pl ayer rolls', 10)
->and(' Pl ayer rolls', 10)
->and(' Pl ayer rolls', 10)
->and(' Pl ayer rolls', 10)
->and(' Pl ayer rolls', 10)
->and(' Pl ayer rolls', 10)
->and(' Pl ayer rolls', 10)
->and(' Pl ayer rolls', 10)
->and(' Pl ayer rolls', 10)
->then(' Score should be', 300);
}

public function runG ven(&world, $action
{
swi t ch($action) {
case 'New gane':
$wor | d[' gane']

$world['rolls'] 0;
}
br eak;
defaul t: {

$ar gunent s)

new Bowl i ngGane;

135

Behaviour-Driven Devel opment

return $this->notlnpl enent ed($action);

}
}
}
public function runWien(&world, $action, $argunents)
{
swi t ch($action) {
case 'Player rolls': {
$wor |l d[' gane'] ->rol | ($argunents[0]);
$worl d['rolls']++;
}
br eak;
defaul t: {
return $this->notlnpl enent ed($action);
}
}
}
public function runThen(&world, $action, $argunents)
{
swi t ch($action) {
case 'Score should be': {
for ($i = $world['rolls']; $i < 20; $i++) {
$wor |l d[' gane']->roll (0)
}
$t hi s- >assert Equal s($argunents[0], $world[' gane']->score());
}
br eak;
defaul t: {
return $this->notlnpl enent ed($action);
}
}
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.

Bow i ngGanmeSpec
[x] Score for gutter game is O

G ven New gane
Then Score should be 0

[x] Score for all ones is 20

G ven New gane

When Pl ayer rolls
and Player rolls
and Player rolls
and Player rolls
and Player rolls
and Player rolls
and Player rolls
and Player rolls
and Player rolls
and Player rolls
and Player rolls
and Player rolls

PRRPRRPRRPRRRRPRPRPRR

136

Behaviour-Driven Devel opment

and Player rolls 1
and Player rolls 1
and Player rolls 1
and Player rolls 1
and Player rolls 1
and Player rolls 1
and Player rolls 1
and Player rolls 1

Then Score shoul d be 20

[x] Score for one spare and 3 is 16

G ven New gane
When Pl ayer rolls 5

and Player rolls 5

and Player rolls 3
Then Score should be 16

[x] Score for one strike and 3 and 4 is 24

G ven New gane
When Pl ayer rolls 10
and Player rolls 3
and Pl ayer rolls 4
Then Score shoul d be 24

[x] Score for perfect ganme is 300

G ven New gane

When Pl ayer rolls 10
and Player rolls 10
and Player rolls 10
and Player rolls 10
and Player rolls 10
and Player rolls 10
and Player rolls 10
and Player rolls 10
and Player rolls 10
and Player rolls 10
and Player rolls 10
and Player rolls 10

Then Score shoul d be 300

Scenarios: 5, Failed: 0, Skipped: O, Inconplete: O.phpunit --printer PHPUnit_Extensions_
PHPUnit 3.7.0 by Sebastian Bergmann.

Bow i ngGanmeSpec
[x] Score for gutter game is O

G ven New gane
Then Score should be 0

[x] Score for all ones is 20

G ven New gane

When Pl ayer rolls
and Pl ayer rolls
and Pl ayer rolls
and Pl ayer rolls
and Pl ayer rolls
and Pl ayer rolls
and Pl ayer rolls
and Pl ayer rolls
and Pl ayer rolls

PRRPRPRRRRRER

137

Behaviour-Driven Devel opment

and
and
and
and
and
and
and
and
and
and
and
Then

[x] Score for one spare and 3 is 16

G ven

Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Score shoul d

New gane

1
1
1
1
1
1
1
1
1
1
1
b

e 20

When Pl ayer rolls 5

and Player rolls 5

and Player rolls 3
Then Score should be 16

[x] Score for one strike and 3 and 4 is 24

G ven

New gane

When Pl ayer rolls 10
and Player rolls 3
and Pl ayer rolls 4
Then Score shoul d be 24

[x] Score for

G ven
When
and
and
and
and
and
and
and
and
and
and
and
Then

New gane

Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Pl ayer rolls
Score shoul d

Scenarios: 5, Failed:

10
10
10
10
10
10
10
10
10
10
10
10
be 300

0, Ski pped: 0,

perfect gane is 300

I nconpl et e:

0.

138

Chapter 14. Code Coverage Analysis

The beauty of testing is found not in the effort but in the effiency.

Knowing what should be tested is beautiful, and knowing what is being tested is
beautiful.
—Murali Nandigama

In this chapter you will learn all about PHPUnit's code coverage functionality that provides an insight
into what parts of the production code are executed when the tests are run. 1t hel ps answering questions
such as:

* How do you find code that is not yet tested -- or, in other words, not yet covered by atest?
» How do you measure testing compl eteness?

An example of what code coverage statistics can mean is that if there is a method with 100 lines of
code, and only 75 of these lines are actually executed when tests are being run, then the method is
considered to have a code coverage of 75 percent.

PHPUnit's code coverage functionality makes use of the PHP_CodeCoverage [http://github.com/
sebastianbergmann/php-code-coverage] component, which in turn leverages the statement coverage
functionality provided by the Xdebug [http://www.xdebug.org/] extension for PHP.

L et us generate a code coverage report for the BankAccount class from Example 12.3, “The com-
plete BankAccount class’.

PHPUnit 3.7.0 by Sebastian Bergmann.

Tinme: 0 seconds
K (3 tests, 3 assertions)

Generating report, this nay take a noment. phpunit --coverage-htm ./report BankAccount Te
PHPUnit 3.7.0 by Sebastian Bergmann.

Time: 0 seconds
K (3 tests, 3 assertions)

Generating report, this may take a nonent.

Figure 14.1, “Code Coverage for set Bal ance() ” shows an excerpt from a Code Coverage report.
Lines of code that were executed while running the tests are highlighted green, lines of code that are
executable but were not executed are highlighted red, and "' dead code" ishighlighted grey. The number
left to the actual line of code indicates how many tests cover that line.

139

http://github.com/sebastianbergmann/php-code-coverage
http://github.com/sebastianbergmann/php-code-coverage
http://github.com/sebastianbergmann/php-code-coverage
http://www.xdebug.org/
http://www.xdebug.org/

Code Coverage Anaysis

Figure 14.1. Code Coveragefor set Bal ance()

82 g R

83 : * Sets the bank account's balance.

84 : e

85 g * @param float $balance

86 : * @throws BankAccountException

87 g * @access protected

88 : */

89 : protected function setBalance($balance)
90 g {

91 2 if ($halance >= 0) {

92

93

94 2 throw new BankAccountException;
95 g }

% I E——

Clicking on the line number of a covered line will open a panel (see Figure 14.2, “Panel with infor-
mation on covering tests’) that shows the test cases that cover thisline.

Figure 14.2. Panel with information on covering tests

82 : J**

83 : * Sets the bank account's balance.

84 &

85 * @param float $halance

86 * @throws BankAccountException

87 : * @access protected

88 : */

89 : protected function setBalance($balance)
90 g {

91 g if ($balance >= 0) {
2 tests cover line 91

® testBalanceCannotBecomeNegative(BankAccountTest) throw new BankAccountException;
® testBalanceCannotBecomeNegative2(BankAccountTest)

The code coverage report for our BankAccount example shows that we do not have any tests yet
that call the set Bal ance(), deposi t Money(), andw t hdr awioney() methods with legal
values. Example 14.1, “Test missing to achieve complete code coverage” shows a test that can be
added to the Bank Account Test test case classto completely cover the BankAccount class.

Example 14.1. Test missing to achieve complete code cover age

<?php
requi re_once ' BankAccount. php';

cl ass BankAccount Test extends PHPUnit_Framewor k_Test Case

{
/1

public function testDepositWthdraw\vbney()

{
$t hi s- >assert Equal s(0, $this->ba->getBal ance());
$t hi s- >ba- >deposi t Money(1);
$t hi s- >assert Equal s(1, $this->ba->getBal ance());
$t hi s- >ba- >wi t hdr awvbney(1) ;

140

Code Coverage Analysis

$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());

}

?>

Figure 14.3, “Code Coverage for set Bal ance() with additional test” shows the code coverage of
theset Bal ance() method with the additional test

Figure 14.3. Code Coveragefor set Bal ance() with additional test

82 : /X*

83 : * Sets the bank account's balance.

84 &

85 * @param float $bhalance

86 * @throws BankAccountException

87 : * @access protected

88 : */

89 : protected function setBalance($balance)
90 g {

91 3: if ($balance >= 0) {

92 1: $this->balance = S$halance;

93 1. } else {

94 2 throw new BankAccountException;
95 g }

96 1: }

Specifying Covered Methods

The @over s annotation (see Table B.1, “ Annotations for specifying which methods are covered by
atest”) can be used in the test code to specify which method(s) atest method wantsto test. If provided,
only the code coverage information for the specified method(s) will be considered. Example 14.2,
“Tests that specify which method they want to cover” shows an example.

Example 14.2. Tests that specify which method they want to cover

<?php
requi re_once ' BankAccount. php';

cl ass BankAccount Test extends PHPUnit_Franmewor k_Test Case
{
prot ected $ba;

protected function set Up()

{
}

$t hi s->ba = new BankAccount ;

public function testBal ancelslnitiallyZero()

{
}

$t hi s- >assert Equal s(0, $this->ba->getBal ance());

public function testBal anceCannot BeconeNegati ve()

{

141

Code Coverage Analysis

try {
$t hi s- >ba- >wi t hdr awmvbney(1) ;
}

cat ch (BankAccount Exception $e) {
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());

return;

}

$this->fail();

public function testBal anceCannot BeconeNegati ve2()

{
try {
$t hi s- >ba- >deposi t Money(-1);
}
cat ch (BankAccount Exception $e) {
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());
return;
}
$this->fail();
}

public function testDepositWthdrawbney()

{
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());
$t hi s- >ba- >deposi t Money(1);
$t hi s- >assert Equal s(1, $this->ba->getBal ance());
$t hi s- >ba- >wi t hdr awivbney(1) ;
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());
}
}
?>

Itisalso possibleto specify that atest should not cover any method by using the @ over sNot hi ng
annotation (see the section called “ @ over sNot hi ng”). This can be helpful when writing integra-
tion tests to make sure you only generate code coverage with unit tests.

Example 14.3. A test that specifiesthat no method should be covered

<?php
cl ass Guest bookl ntegrati onTest extends PHPUni t _Ext ensi ons_Dat abase_Test Case

{

public function testAddEntry()

{
$guest book = new Guest book();

142

Code Coverage Analysis

$guest book- >addEntry("suzy", "Hello world!");

$queryTabl e = $t hi s- >get Connecti on() - >cr eat eQueryTabl e(
' guest book', ' SELECT * FROM guest book’
)
$expect edTabl e = $t hi s- >creat eFl at Xnl Dat aSet (" expect edBook. xm ")
- >get Tabl e(" guest book") ;
$t hi s- >assert Tabl esEqual ($expect edTabl e, $queryTabl e);

}

?>

Ignoring Code Blocks

Sometimes you have blocks of code that you cannot test and that you may want to ignore during
code coverage analysis. PHPUnit lets you do this using the @ odeCover agel gnor e, @ode-
Cover agel gnoreStart and @odeCover agel gnor eEnd annotations as shown in Exam-
ple 14.4, “Using the @ odeCover agel gnor e, @odeCover agel gnoreSt art and @ode-
Cover agel gnor eEnd annotations’.

Example 14.4. Using the @odeCover agel gnor e,
@odeCover agel gnoreSt ar t and @odeCover agel gnor eEnd
annotations
<?php
cl ass Foo
{
public function bar()
{
}
}
cl ass Bar
{
public function foo()
{
}
}
if (FALSE) {
print '*';
}
?>

The lines of code that are markes as to be ignored using the annotations are counted as executed (if
they are executable) and will not be highlighted.

Including and Excluding Files

By default, all sourcecode files that contain at least one line of code that has been executed (and
only thesefiles) are included in the report. The sourcecode files that are included in the report can be
filtered by using a blacklist or awhitelist approach.

143

Code Coverage Analysis

The blacklist is pre-filled with all sourcecode files of PHPUnit itself as well as the tests. When the
whitelist is empty (default), blacklisting is used. When the whitelist is not empty, whitelisting is used.
Each file on the whitdlist is added to the code coverage report regardless of whether or not it was
executed. All lines of such afile, including those that are not executable, are counted as not executed.

When you set pr ocessUncover edFi | esFromihi tel i st="true" inyour PHPUnit config-
uration (see the section called “Including and Excluding Files for Code Coverage”) then these files
will beincluded by PHP_CodeCoverage to properly calculate the number of executable lines.

Note
Please note that the loading of sourcecode files that is performed when

processUncoveredFi | esFromhi tel i st="true" is set can cause problems
when a sourcecode file contains code outside the scope of a class or function, for instance.

PHPUnit's XML configuration file (see the section called “Including and Excluding Files for Code
Coverage”) can be used to control the blacklist and the whitelist. Using awhitelist isthe recommended
best practice to control thelist of filesincluded in the code coverage report.

Edge cases

For the most part it can safely be said that PHPUnNIt offersyou "line based" code coverage information
but due to how that information is collected there are some noteworthy edge cases.

Example 14.5.

<?php

if(false) this_function_call_shows_up_as_covered();

i f(false)
wi || _al so_show_up_as_coveraged();

if(false) {
this_call _w Il _never_show up_as_covered()

}

?>

144

Chapter 15. Other Uses for Tests

Once you get used to writing automated tests, you will likely discover more uses for tests. Here are
some examples.

Agile Documentation

Typically, in aproject that is developed using an agile process, such as Extreme Programming, the
documentation cannot keep up with the frequent changes to the project's design and code. Extreme
Programming demands collective code ownership, so all developers need to know how the entire
system works. If you are disciplined enough to consequently use "speaking names' for your tests that
describe what a class should do, you can use PHPUnit's TestDox functionality to generate automated
documentation for your project based on its tests. This documentation gives devel opers an overview
of what each class of the project is supposed to do.

PHPUnit's TestDox functionality looks at atest classand all the test method names and converts them
from camel case PHP names to sentences: t est Bal ancel sl nitial | yZer o() becomes "Bal-
ance isinitialy zero". If there are severa test methods whose names only differ in a suffix of one
or more digits, such ast est Bal anceCannot BeconmeNegat i ve() andt est Bal anceCan-
not BeconeNegat i ve2() , the sentence "Balance cannot become negative" will appear only once,
assuming that all of these tests succeed.

Let us take alook at the agile documentation generated for the BankAccount class (from Exam-
ple12.1, “Tests for the BankAccount class’):

PHPUnit 3.7.0 by Sebastian Bergmann.

BankAccount

[x] Balance is initially zero

[x] Bal ance cannot become negativephpunit --testdox BankAccount Test
PHPUnit 3.7.0 by Sebastian Bergmann.

BankAccount
[x] Balance is initially zero
[x] Bal ance cannot becone negative

Alternatively, the agile documentation can be generated in HTML or plain text format and written to
afileusingthe- -t est dox- ht m and- -t est dox-t ext arguments.

Agile Documentation can be used to document the assumptions you make about the external packages
that you usein your project. When you use an external package, you are exposed to the risks that the
package will not behave as you expect, and that future versions of the package will change in subtle
ways that will break your code, without you knowing it. Y ou can address these risks by writing atest
every time you make an assumption. If your test succeeds, your assumption isvalid. If you document
all your assumptions with tests, future releases of the external package will be no cause for concern:
if the tests succeed, your system should continue working.

Cross-Team Tests

When you document assumptionswith tests, you own thetests. The supplier of the package -- who you
make assumptions about -- knows nothing about your tests. If you want to have a closer relationship
with the supplier of a package, you can use the tests to communicate and coordinate your activities.

When you agree on coordinating your activities with the supplier of a package, you can write the
tests together. Do this in such a way that the tests reveal as many assumptions as possible. Hidden

145

Other Uses for Tests

assumptions are the death of cooperation. With the tests, you document exactly what you expect from
the supplied package. The supplier will know the package is complete when all the tests run.

By using stubs (see the chapter on "Mock Objects’, earlier in this book), you can further decouple
yourself from the supplier: Thejob of the supplier isto make the tests run with the real implementation
of the package. Y our job is to make the tests run for your own code. Until such time as you have the
real implementation of the supplied package, you use stub objects. Following this approach, the two
teams can devel op independently.

146

Chapter 16. Skeleton Generator

The PHPUnNiIt Skeleton Generator isatool that can generate skel eton test classes from production code
classes and vice versa. It can be installed using the following command:

pear install phpunit/PHPUNnit_Skel et onGener at or

Generating a Test Case Class Skeleton

When you are writing tests for existing code, you have to write the same code fragments such as
public function testMthod()

{

}

over and over again. The PHPUnit Skeleton Generator can help you by analyzing the code of the
existing class and generating a skeleton test case classfor it.

Example 16.1. The Calculator class

<?php
cl ass Cal cul at or
{
public function add($a, $b)
{
return $a + $b;
}
}
?>

The following example shows how to generate a skeleton test class for a class named Cal cul at or
(see Example 16.1, “The Calculator class’).

PHPUNni t Skel eton Generator 1.0.0 by Sebasti an Ber gnann.

Wote skeleton for "Calcul atorTest"” to "/hone/sb/Cal cul at or Test. php". phpuni t-skel gen --t
PHPUNni t Skel eton Generator 1.0.0 by Sebasti an Ber gnann.

Wote skeleton for "Calcul atorTest” to "/hone/sb/Cal cul at or Test. php".

For each method inthe original class, there will be anincompl ete test case (see Chapter 9, Incomplete
and Skipped Tests) in the generated test case class.

Namespaced Classes and the Skeleton Gener ator

When you are using the skeleton generator to generate code based on a class that is declared
in a namespace [http://php.net/namespace] you have to provide the qualified name of the
class aswell asthe path to the sourcefileit is declared in.

For instance, for aclassCal cul at or thatisdeclaredinthepr oj ect namespaceyou need
to invoke the skeleton generator like this:

PHPUNni t Skel eton Generator 1.0.0 by Sebasti an Ber gnann.

Wote skeleton for "project\Cal cul atorTest" to "/hone/sb/ Cal cul at or Test. php". phpuni t -
PHPUNni t Skel eton Generator 1.0.0 by Sebasti an Ber gnann.

147

http://php.net/namespace
http://php.net/namespace

Skeleton Generator

Wote skeleton for "project\CalculatorTest" to "/hone/sb/ Cal cul at or Test. php"

Below is the output of running the generated test case class.

PHPUnit 3.7.0 by Sebastian Bergmann.
|

Time: 0 seconds, Menory: 3.50M
There was 1 inconplete test:

1) Cal cul atorTest::testAdd
This test has not been inplenmented yet.

/ hone/ sb/ Cal cul at or Test . php: 38

OK, but inconplete or skipped tests!

Tests: 1, Assertions: 0, Inconplete: 1.phpunit --bootstrap Cal cul ator.php --verbose Cal c
PHPUnit 3.7.0 by Sebastian Bergmann.

|

Time: 0 seconds, Menory: 3.50M

There was 1 inconplete test:

1) Cal cul atorTest::testAdd
This test has not been inplenmented yet.

/ home/ sb/ Cal cul at or Test . php: 38
OK, but inconplete or skipped tests!
Tests: 1, Assertions: 0, Inconplete: 1.

Youcanuse @ssert annotation in the documentation block of amethod to automatically generate
simple, yet meaningful tests instead of incomplete test cases. Example 16.2, “The Calculator class
with @assert annotations’ shows an example.

Example 16.2. The Calculator classwith @assert annotations

<?php
cl ass Cal cul at or

{

public function add($a, $b)
{

}

return $a + $b;

}

?>

Each method in the original class is checked for @ssert annotations. These are transformed into
test code such as

/**

* CGenerated from @ssert (0, 0) ==

148

Skeleton Generator

>/
public function testAdd() {
$0 = new Cal cul ator;
$t hi s- >assert Equal s(0, $o->add(0, 0));
}

Below is the output of running the generated test case class.

PHPUnit 3.7.0 by Sebastian Ber gnann.

Time: 0 seconds, Menory: 3.50M

OK (4 tests, 4 assertions)phpunit --bootstrap Cal cul ator. php --verbose Cal cul at or Test
PHPUnit 3.7.0 by Sebastian Ber gnann.

Time: 0 seconds, Menory: 3.50M

OK (4 tests, 4 assertions)

Table 16.1, “ Supported variations of the @assert annotation” shows the supported variations of the
@ssert annotation and how they are transformed into test code.

Table 16.1. Supported variations of the @assert annotation

Annotation Transformed to
@ssert (...) == assert Equal s(X, method(...))
@ssert (...) !'= assert Not Equal s(X, nethod(...))
@ssert (...) === X assert Same(X, nethod(...))
@ssert (...) !'==X assert Not Same(X, nethod(...))
@ssert (...) > X assert G eat er Than(X,
met hod(...))
@ssert (...) >= X assert G eat er ThanOr Equal (X,
met hod(...))
@ssert (...) <X assertLessThan(X, nethod(...))
@ssert (...) <= X assert LessThanOr Equal (X,
nmet hod(...))
@ssert (...) throws X @xpect edException X

Generating a Class Skeleton from a Test
Case Class

When you are doing Test-Driven Devel opment (see Chapter 12, Test-Driven Devel opment) and write
your tests before the code that the tests exercise, PHPUnNit can help you generate class skeletons from
test case classes.

Following the convention that the testsfor aclassUni t arewritteninaclassnamed Uni t Test , the
test case class source is searched for variables that reference objects of the Uni t class and analyzing
what methods are called on these objects. For example, take alook at Example 16.4, “The generated
BowlingGame class skeleton” which has been generated based on the analysis of Example 16.3, “The
BowlingGameTest class’.

149

Skeleton Generator

Example 16.3. The BowlingGameT est class

<?php
cl ass Bow i ngGaneTest extends PHPUnit_Framewor k_Test Case
{

prot ected $gane;

protected function setUp()

{
$t hi s->game = new Bowl i ngGane;
}
protected function roll Many($n, $pins)
{
for ($i =0; $i < $n; $i++) {
$t hi s- >game- >rol | ($pi ns) ;
}
}
public function testScoreForGutterGnel sO()
{
$t hi s->rol | Many(20, 0);
$t hi s- >assert Equal s(0, $this->ganme->score());
}
}
?>

PHPUNni t Skel eton Generator 1.0.0 by Sebasti an Ber gnann

Wote skeleton for "Bow i ngGane" to "./Bow i ngGane. php". phpunit-skel gen --class Bow i ngC
PHPUNni t Skel eton Generator 1.0.0 by Sebastian Ber gnann

Wote skeleton for "Bow ingGane" to "./Bow i ngGame. php".

Example 16.4. The generated BowlingGame class skeleton

<?php

cl ass Bow i ngGane

{
public function roll ()
{
t hrow new Runti neException(' Not yet inplenented.")
}
public function score()
{
t hrow new Runti neException(' Not yet inplenented.")
}
}
?>

150

Skeleton Generator

Below isthe output of running the test against the generated class.

PHPUnit 3.7.0 by Sebastian Bergmann.
E

Time: 0 seconds, Menory: 3.50M
There was 1 error:

1) Bow i ngGaneTest: : t est Scor eFor Gut t er Ganel sO
Runti mneException: Not yet i npl enented.

/ home/ sb/ Bowl i ngGane. php: 13

/ home/ sb/ Bow i ngGaneTest . php: 14

/ home/ sb/ Bow i ngGaneTest . php: 20

FAI LURES!

Tests: 1, Assertions: 0, Errors: 1.phpunit --bootstrap Bow i ngGane. php Bow i ngGaneTest
PHPUnit 3.7.0 by Sebastian Bergmann.

E

Time: 0 seconds, Menory: 3.50M

There was 1 error:

1) Bow i ngGaneTest: : t est Scor eFor Gut t er Ganel sO
Runti mneException: Not yet i npl enented.

/ home/ sb/ Bow i ngGane. php: 13
/ home/ sb/ Bow i ngGaneTest . php: 14
/ home/ sb/ Bow i ngGaneTest . php: 20

FAI LURES!
Tests: 1, Assertions: 0, Errors: 1.

151

Chapter 17. PHPUnNIt and Selenium

Selenium Server

Selenium Server [http://seleniumhg.org/] is atest tool that allows you to write automated user-inter-
face tests for web applications in any programming language against any HTTP website using any
mainstream browser. It performs automated browser tasks by driving the browser's process through
the operating system. Selenium tests run directly in abrowser, just asreal users do. These tests can be
used for both acceptance testing (by performing higher-level tests on the integrated system instead of
just testing each unit of the system independently) and browser compatibility testing (by testing the
web application on different operating systems and browsers).

The only supported scenario of PHPUnNit_Selenium is that of a Selenium 2.x server. The server can
be accessed through the classic Selenium RC Api, aready present in 1., or with the WebDriver AP
(partially implemented) from PHPUnit_Selenium 1.2.

The reason behind this decision is that Selenium 2 is backward compatible and Selenium RC is not
maintained anymore.

Installation

First, install the Selenium Server:
1. Download adistribution archive of Selenium Server [http://seleniumhg.org/download/].

2. Unzip the distribution archive and copy sel eni um server-standal one-2.9.0.j ar
(check the version suffix) to/ usr /| ocal / bi n, for instance.

3. Start the Selenium Server server by running j ava -jar /usr/local/bin/seleni-
um server-standal one-2.9.0.j ar.

Second, install the PHPUnit_Selenium package, necessary for natively accessing the Selenium Server
from PHPUnit:

pear install phpunit/PHPUNnit_Sel eni um

Now we can send commands to the Selenium Server using its client/server protocol.

PHPUnNIit_Extensions_Selenium2TestCase

The PHPUNni t _Ext ensi ons_Sel eni unRTest Case test case lets you use the WebDriver AP
(partially implemented).

Example 17.1, “Usage example for PHPUnit_Extensions Selenium2TestCase” shows how to test the
contentsof the<t i t | e> element of theht t p: / / www. exanpl e. com website.

Example 17.1. Usage example for PHPUnNit_Extensions Selenium2T estCase

<?php
cl ass WebTest extends PHPUnit_Ext ensi ons_Sel eni unRTest Case
{
protected function set Up()
{
$t hi s- >set Browser (' firefox');
$t hi s- >set Browser Url (" http://ww. exanpl e. conl');

152

http://seleniumhq.org/
http://seleniumhq.org/
http://seleniumhq.org/download/
http://seleniumhq.org/download/

PHPUnit and Selenium

public function testTitle()

{
$this->url (" http://ww. exanpl e.com');
$t hi s- >assert Equal s(' Exanpl e WAV Page', $this->title());

PHPUni t 3.6.10 by Sebastian Bergmann.
F

Ti me: 28 seconds, Menory: 3.00M
There was 1 failure:

1) WebTest::testTitle

Fai | ed asserting that two strings are equal .
--- Expected

+++ Act ual

@ @@
-' Exanpl e WNWV Page'
+' | ANA — Exanpl e domai ns'

/ home/ gi or gi o/ WebTest . php: 13

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.phpunit WbTest
PHPUnit 3.6.10 by Sebasti an Ber gnann.

F
Ti me: 28 seconds, Menory: 3.00M
There was 1 failure:

1) WebTest::testTitle

Fai l ed asserting that two strings are equal .
--- Expected

+++ Act ual

@ @@
-' Exanpl e WNWV Page'
+' | ANA — Exanpl e dormmai ns'

/ home/ gi or gi o/ WebTest . php: 13

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

The commands of Selenium2TestCare are implemented via __ call(). Please refer to the end-
to-end test for PHPUnNIit_Extensions_Selenium2TestCase [https://github.com/sebastianbergmann/ph-
punit-selenium/blob/master/Tests/Selenium2TestCaseTest.php] for alist of every supported feature.

PHPUnNIt_Extensions_SeleniumTestCase

The PHPUni t _Ext ensi ons_Sel eni unilest Case test case extension implements the client/
server protocol to talk to Selenium Server as well as specialized assertion methods for web testing.

Example 17.2, “Usage example for PHPUnit_Extensions SeleniumTestCase” shows how to test the
contentsof the<t i t | e> element of theht t p: / / www. exanpl e. com website.

153

https://github.com/sebastianbergmann/phpunit-selenium/blob/master/Tests/Selenium2TestCaseTest.php
https://github.com/sebastianbergmann/phpunit-selenium/blob/master/Tests/Selenium2TestCaseTest.php
https://github.com/sebastianbergmann/phpunit-selenium/blob/master/Tests/Selenium2TestCaseTest.php
https://github.com/sebastianbergmann/phpunit-selenium/blob/master/Tests/Selenium2TestCaseTest.php

PHPUnit and Selenium

Example 17.2. Usage example for PHPUnNit_Extensions SeleniumTestCase

<?php
requi re_once ' PHPUni t/ Ext ensi ons/ Sel eni unirest Case. php' ;

cl ass WebTest extends PHPUnit Extensions_Sel eni unTest Case

{
protected function set Up()
{
$t hi s- >set Browser (' *firefox');
$t hi s- >set Browser Url (" http://ww. exanpl e. conl ') ;
}
public function testTitle()
{
$t hi s- >open(' http://ww. exanpl e. conl');
$t hi s->assert Titl e(' Exanpl e W\WV Page') ;
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
=

Time: 9 seconds, Menory: 6.00M
There was 1 failure:

1) WebTest::testTitle
Current URL: http://ww.iana. org/ domai ns/ exanpl e/

Fai |l ed asserting that 'l ANA —Exanpl e domai ns' matches PCRE pattern "/ Exanpl e WNWV Page/"
FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit WbTest

PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 9 seconds, Menory: 6.00M

There was 1 failure:

1) WebTest::testTitle
Current URL: http://ww.iana. org/ domai ns/ exanpl e/

Fai |l ed asserting that 'l ANA —Exanpl e domai ns' matches PCRE pattern "/ Exanpl e WNWV Page/"

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

Unlike with the PHPUnit Framewor k_Test Case class, test case classes that extend
PHPUNi t _Ext ensi ons_Sel eni uniTest Case have to provide a set Up() method. This
method is used to configure the Selenium Server session. See Table 17.1, “ Selenium Server API: Set-
up” for the list of methods that are available for this.

154

PHPUnit and Selenium

Table 17.1. Selenium Server API: Setup

Method

Meaning

voi d setBrowser(string $browser)

Set the browser to be used by the Selenium Serv-
€r server.

void setBrowserUrl (string
$browser Ur 1)

Set the base URL for the tests.

voi d set Host (string $host)

Set the hostname for the connection to the Sele-
nium Server server.

void setPort(int $port)

Set the port for the connection to the Selenium
Server server.

voi d set Ti meout (i nt $timeout)

Set the timeout for the connection to the Seleni-
um Server server.

voi d set Sl eep(int $seconds)

Set the number of seconds the Selenium Server
client should sleep between sending action com-
mands to the Selenium Server server.

PHPUniIt can optionally capture a screenshot when a Selenium test fails. To enable this, set $cap-
t ur eScr eenshot OnFai | ur e, $scr eenshot Pat h,and$scr eenshot Ur | inyour test case
class as shown in Example 17.3, “ Capturing a screenshot when atest fails’.

Example 17.3. Capturing a screenshot when a test fails

<?php

requi re_once ' PHPUni t / Ext ensi ons/ Sel eni unirest Case. php'

cl ass WebTest extends PHPUnit_Ext ensi ons_Sel eni unTest Case

{
prot ected $captureScreenshot OnFailure = TRUE
protected $screenshot Path = '/var/ww/ | ocal host/ ht docs/ screenshot s'
protected $screenshotUrl = 'http://Iocal host/screenshots'
protected function set Up()
{
$t hi s- >set Browser (' *firefox")
$t hi s- >set Browser Url (' http://ww. exanpl e. conl ')
}
public function testTitle()
{
$t hi s- >open(' http://ww. exanpl e. conl');
$t hi s->assertTitl e(' Exanpl e W\WV Page') ;
}
}
?>

PHPUnit 3.7.0 by Sebastian Bergmann.
F
Time: 7 seconds, Menory: 6.00M

There was 1 failure:

1) WebTest::testTitle

Current URL: http://ww.iana. org/ domai ns/ exanpl e/

Scr eenshot :

http://1ocal host/screenshot s/ 334b080f 2364b5f 11568eelc7f 6742c9. png

155

PHPUnit and Selenium

Fai |l ed asserting that 'I ANA —Exanpl e domai ns' matches PCRE pattern "/ Exanpl e WV Page/"

FAI LURES!

Tests: 1, Assertions: 1, Failures: 1.phpunit WbTest

PHPUnit 3.7.0 by Sebastian Bergmann.

F

Time: 7 seconds, Menory: 6.00M

There was 1 failure:

1) WebTest::testTitle

Current URL: http://ww.iana. org/ domai ns/ exanpl e/

Screenshot: http://|ocal host/screenshot s/ 334b080f 2364b5f 11568eelc7f 6742c9. png

Fai |l ed asserting that 'I ANA —Exanpl e domai ns' matches PCRE pattern "/ Exanpl e WV Page/"

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

Y ou can run each test using aset of browsers: Instead of using set Br owser () to set up one browser
you declareapubl i ¢ stati c array named $br owser s inyour test case class. Each item in this
array describes one browser configuration. Each of these browsers can be hosted by different Selenium
Server servers. Example 17.4, “ Setting up multiple browser configurations” shows an example.

Example 17.4. Setting up multiple browser configurations

<?php
requi re_once ' PHPUni t/ Ext ensi ons/ Sel eni unirest Case. php' ;

cl ass WebTest extends PHPUnit_Ext ensi ons_Sel eni unTest Case

{
public static $browsers = array(

array(
' nang' => 'Firefox on Linux',
"browser' => '*firefox',
" host"' => 'ny.|inux. box',
' port’ => 4444,
"tinmeout' => 30000,

)

array(
' nang' => 'Safari on MacCS X,
"browser' => '*safari',
" host"' => ' my. macosx. box',
'port'’ => 4444,
"tinmeout' => 30000,

)

array(
" nane' => 'Safari on Wndows XP',
"browser' => '*custom C:\Program Fil es\ Safari\Safari.exe -url",
" host' => ' ny.w ndowsxp. box"',
' port’ => 4444,
"tinmeout' => 30000,

)

array(
' nang' => "I nternet Explorer on Wndows XP',
"browser' => '*iexplore',
" host' => ' ny.w ndowsxp. box"',
'port’ => 4444,

"tinmeout' => 30000,

156

PHPUnit and Selenium

)
DK

protected function set Up()

{
$thi s->setBrowser Ur| (" http://ww. exanpl e. com ") ;
}
public function testTitle()
{
$t hi s->open(' http://ww. exanpl e. conl ') ;
$thi s->assertTitl e(' Exanpl e Wb Page');
}
}
?>

PHPUNi t _Ext ensi ons_Sel eni uniTest Case can collect code coverage information for tests
run through Selenium:

1. Copy PHPUnI t / Ext ensi ons/ Sel eni unCommon/ phpuni t _cover age. php into your
webserver's document root directory.

2. In your webserver's php.ini configuration file, configure PHPUNI t/ Ext en-
si ons/ Sel eni umCommon/ pr epend. php and PHPUnI t / Ext ensi ons/ Sel eni um
Conmon/ append. php as the aut o_prepend fil e and aut o_append_fil e, respec-
tively.

3. Inyour test case class that extends PHPUni t _Ext ensi ons_Sel eni uniTest Case, use

protected $coverageScriptU |l = 'http://host/phpunit_coverage. php';

to configure the URL for the phpuni t _cover age. php script.

Table 17.2, “Assertions” lists the various assertion methods that
PHPUni t _Ext ensi ons_Sel eni uniTest Case provides.

Table17.2. Assertions

Assertion Meaning

voi d Reports an error if the value of the element iden-
assert El ement Val ueEqual s(string |[tifiedby $I ocat or isnot equa to the given
$l ocator, string $text) $t ext .

voi d Reports an error if the value of the element
assert El ement Val ueNot Equal s(st ri ngdentified by $I ocat or isequal to the given
$l ocator, string $text) $text.

voi d Reports an error if the value of the element iden-
assert El ement Val ueCont ai ns(st ri ng|tified by $| ocat or does not contain the given
$l ocator, string $text) $t ext.

voi d Reports an error if the value of the element iden-

assert El ement Val ueNot Cont ai ns(st r {tifged by $I ocat or containsthe given $t ext .
$l ocator, string $text)

voi d Reports an error if the element identified by
assert El ement Cont ai nsText (string |$l ocat or doesnot contain the given $t ext .
$l ocator, string $text)

voi d Reports an error if the element identified by
assert El ement Not Cont ai nsText (stri Mg ocat or containsthe given $t ext .
$l ocator, string $text)

157

PHPUnit and Selenium

Assertion

Meaning

voi d
assert Sel ect HasOpti on(string

Reports an error if the given option is not avail-
able.

$sel ect Locator, string $option)

voi d
assert Sel ect Not HasOpti on(string
$sel ect Locator, string $option)

Reports an error if the given option is available.

voi d Reports an error if the given label is not selected.
assert Sel ect ed($sel ect Locat or,

$opti on)

voi d Reports an error if the given label is selected.
assert Not Sel ect ed($sel ect Locat or,
$opt i on)

voi d assertlsSel ected(string
$sel ect Locator, string $val ue)

Reports an error if the given value is not select-
ed.

Reports an error if the given value is selected.

voi d assertl| sNot Sel ected(string
$sel ect Locator, string $val ue)

Table 17.3, “Template Methods” shows the method of

PHPUNi t _Ext ensi ons_Sel eni unTest Case:

template

Table 17.3. Template M ethods

Method
voi d defaul t Assertions()

Meaning

Override to perform assertions that are shared by
al tests of atest case. This method is called after
each command that is sent to the Selenium Serv-
er server.

Please refer to the documentation of Selenium commands [http://release.sel eniumhg.org/seleni-
um-core/1.0.1/reference.html] for areference of the commands available and how they are used.

The commands of Selenium 1 are implemented dynamically via __cal. Refer aso to the API
docs for PHPUNit Extensions SeleniumTestCase Driver::_ call() [https.//github.com/sebastian-
bergmann/phpunit-sel enium/bl ob/master/PHPUNit/Extensions/SeleniumTestCase/Driver.php#L 410]

for alist of al the supported methods on the PHP side, along with arguments and return type where
available.

Using ther unSel enese($fi | enane) method, you can also run a Selenium test from its Sele-
nese/HTML specification. Furthermore, using the static attribute $sel eneseDi r ect or y, you can
automatically create test objects from a directory that contains Selenese/HTML files. The specified
directory isrecursively searched for . ht mfiles that are expected to contain Selenese/HTML. Exam-
ple 17.5, “Use adirectory of Selenese/HTML files astests” shows an example.

Example 17.5. Usea directory of Selenese/HTML filesastests

<?php
requi re_once ' PHPUni t/ Ext ensi ons/ Sel eni unirest Case. php' ;

cl ass Sel eneseTests extends PHPUnit Extensions_Sel eni unrest Case

{
}

?>

public static $sel eneseDirectory = '/path/to/files'

From Selenium 1.1.1, an experimental feature is included allowing the user to share the session be-
tween tests. The only supported case isto share the session between all tests when asingle browser is

158

http://release.seleniumhq.org/selenium-core/1.0.1/reference.html
http://release.seleniumhq.org/selenium-core/1.0.1/reference.html
http://release.seleniumhq.org/selenium-core/1.0.1/reference.html
https://github.com/sebastianbergmann/phpunit-selenium/blob/master/PHPUnit/Extensions/SeleniumTestCase/Driver.php#L410
https://github.com/sebastianbergmann/phpunit-selenium/blob/master/PHPUnit/Extensions/SeleniumTestCase/Driver.php#L410
https://github.com/sebastianbergmann/phpunit-selenium/blob/master/PHPUnit/Extensions/SeleniumTestCase/Driver.php#L410
https://github.com/sebastianbergmann/phpunit-selenium/blob/master/PHPUnit/Extensions/SeleniumTestCase/Driver.php#L410

PHPUnit and Selenium

used. Call PHPUni t _Ext ensi ons_Sel eni unilest Case: : shar eSessi on(true) inyour
bootstrap file to enable session sharing. The session will be reset in the case of not successul tests
(failed or incomplete); it is up to the user to avoid interactions between tests by resetting cookies or
logging out from the application under test (with atearDown() method).

159

Chapter 18. Logging

PHPUnNIt can produce severa types of logfiles.

Test Results (XML)

The XML logfilefor test results produced by PHPUnNit is based upon the one used by the JUnit task for
Apache Ant [http://ant.apache.org/manual/Optional Tasks/junit.html]. The following example shows
the XML logfile generated for thetestsin Arr ay Test :

<?xm version="1.0" encodi ng="UTF- 8" ?>
<testsuites>
<testsuite nane="ArrayTest"
file="/home/sb/ArrayTest. php"
tests="2"
assertions="2"
failures="0"
errors="0"
ti me="0.016030">
<t est case nanme="t est NewArrayl senpt y"
cl ass="ArrayTest"
file="/home/sb/ArrayTest. php"
l'ine="6"
assertions="1"
ti me="0.008044"/ >
<t est case name="t est Arr ayCont ai nsAnEl enent "
cl ass="ArrayTest"
file="/home/sb/ArrayTest. php"
line="15"
assertions="1"
ti me="0.007986"/ >
</testsuite>
</testsuites>

The following XML logfile was generated for two tests, t est Fai | ure andt est Err or, of atest
case classnamed Fai | ur eEr r or Test and shows how failures and errors are denoted.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<testsuites>
<testsuite nane="Fail ureErrorTest"
file="/home/sb/Fail ureErrorTest. php"
tests="2"
assertions="1"
failures="1"
errors="1"
time="0.019744" >
<t est case name="test Fail ure"
cl ass="Fail ureError Test"
file="/hone/sb/Fail ureErrorTest. php"
line="6"
assertions="1"
time="0.011456">
<failure type="PHPUnit_Framewor k_Expect ati onFai | edException">
test Fail ure(Fail ureErrorTest)
Fai l ed asserting that integer:2 matches expected val ue integer:1.

/ hone/ sb/ Fai | ur eError Test . php: 8
</failure>

</testcase>

<t est case nane="testError"

160

http://ant.apache.org/manual/OptionalTasks/junit.html
http://ant.apache.org/manual/OptionalTasks/junit.html
http://ant.apache.org/manual/OptionalTasks/junit.html

Logging

Test

Test

cl ass="Fail ureError Test"
file="/hone/sb/Fail ureErrorTest. php
line="11"
assertions="0"
time="0.008288">
<error type="Exception">testError(FailureErrorTest)
Excepti on:

/ hone/ sb/ Fai | ur eError Test . php: 13
</error>
</testcase>
</testsuite>
</testsuites>

Results (TAP)

The Test Anything Protocol (TAP) [http://testanything.org/] is Perl's simple text-based interface be-
tween testing modules. The following example shows the TAP logfile generated for the testsin Ar -
rayTest:

TAP version 13

ok 1 - testNewArrayl senpty(ArrayTest)

ok 2 - testArrayContai nsAnEl ement (ArrayTest)
1..2

The following TAP logfile was generated for two tests, t est Fai | ure andt est Err or, of atest
case classnamed Fai | ur eEr r or Test and shows how failures and errors are denoted.

TAP version 13
not ok 1 - Failure: testFailure(Fail ureErrorTest)

message: 'Failed asserting that <integer:2> matches expected val ue <integer:1>.'

severity: fail
dat a:
got: 2
expected: 1

not ok 2 - Error: testError(FailureErrorTest)
1..2

Results (JSON)

The JavaScript Object Notation (JSON) [http://www.json.org/] is alightweight data-interchange for-
meat. The following example shows the JSON messages generated for the testsin Ar r ay Test :

{"event":"suiteStart","suite":"ArrayTest", "tests": 2}
{"event":"test", K "suite":"ArrayTest",
"test":"test NewArrayl senpty(ArrayTest)", "status": " pass",
"time":0.000460147858, "trace":[], "nessage":""}
{"event":"test", 6 "suite":"ArrayTest",
"test":"test ArrayCont ai nSAnEl enent (ArrayTest)", "status": "pass",
"time":0.000422954559, "trace":[], "nessage":""}

The following JSON messages were generated for two tests, t est Fai | ure andt est Error, of a
test case class named Fai | ur eEr r or Test and show how failures and errors are denoted.

{"event":"suiteStart","suite":"FailureErrorTest","tests": 2}
{"event":"test","suite":"FailureErrorTest",

161

http://testanything.org/
http://testanything.org/
http://www.json.org/
http://www.json.org/

Logging

"test":"testFailure(FailureErrorTest)","status":"fail"

"time":0.0082459449768066, "trace": [],

"message": "Fail ed asserting that <integer:2> is equal to <integer:1>."}
{"event":"test","suite":"FailureErrorTest"

"test":"testError(FailureErrorTest)","status":"error",

"tinme":0.0083680152893066, "trace":[], "nmessage":""}

Code Coverage (XML)

The XML format for code coverage information logging produced by PHPUnit isloosely based upon
the one used by Clover [http://www.atlassian.com/software/clover/]. The following example shows
the XML logfile generated for the testsin Bank Account Test :

<?xm version="1.0" encodi ng="UTF- 8" ?>
<coverage generated="1184835473" phpunit="3.6.0">
<proj ect name="BankAccount Test" ti nestanp="1184835473">
<fil e name="/home/ sb/ BankAccount . php" >
<cl ass nane="BankAccount Excepti on">
<metrics nethods="0" coverednet hods="0" statenents="0"
cover edst at enent s="0" el ement s="0" cover edel enent s="0"/>

</cl ass>
<cl ass nanme="BankAccount ">

<nmetrics nethods="4" coverednet hods="4" st atenents="13"
cover edst at enent s="5" el enment s="17" coveredel enent s="9"/ >

</cl ass>

<line num"77"

<line num="79"

<line num="89"

<line num="91"

<line num="92"

<line num="93"

<line num="94"

<line num="96"

<line num="105"
<line num="107"
<line num="109"
<line num="119"
<line num="121"
<line nunm="123"
<nmetri

</file>
<metrics files="1" |oc="126" ncloc="37" classes="2" net hods="4"
cover edrret hods="4" st at enent s="13" cover edst at enent s="5"
el enent s="17" cover edel enents="9"/>

</ pr oj ect >

</ cover age>

Code Coverage (TEXT)

Human readable code coverage output for the command-line or a text file. The aim of this output
format is to provide a quick coverage overview while working on a small set of classes. For bigger
projects this output can be useful to get an quick overview of the projects coverage or when used with
the--filter functionality. When used from the command-line by writing to php: / / st dout
thiswill honor the - - col or s setting. Writing to standard out is the default option when used from
the command-line. By default this will only show files that have at least one covered line. This can
only be changed viathe showUncover edFi | es xml configuration option. See the section called

“Logging”.

type="net hod" count="3"/>
type="stnt" count="3"/>
type="net hod" count="2"/>
type="stnt" count="2"/>
type="stnt" count="0"/>
type="stnt" count="0"/>
type="stnt" count="2"/>
type="stnt" count="0"/>
t ype="net hod" count="1"/>
type="stnm" count="1"/>
type="stnt" count="0"/>
t ype="net hod" count="1"/>
type="stnt" count="1"/>
type="stnmt" count="0"/>

cs loc="126" ncloc="37" classes="2" nethods="4" coverednet hods="4"
st at enent s="13" cover edst at enent s="5" el enent s="17"
cover edel enent s="9"/ >

162

http://www.atlassian.com/software/clover/
http://www.atlassian.com/software/clover/

Logging

Figure 18.1. Code Coverage output on the command-line with colors

Code Coverage Report for "BankAccount"
2011-16-21 13:12:17

summary:

@bankaccount.controller: :BankAccountController
@bankaccount.controller: :BankAccountListController

@bankaccount. framework: :ControllerException

@bankaccount. framework: :ControllerFactory

@bankaccount. framework: :FrontController
@bankaccount. framework: :HashMap

@bankaccount. framework: : IdentityMap
Methods: ©.00% (@/ 6) Lines: 0.00%

163

Chapter 19. Extending PHPUnNiIt

PHPUnNIt can be extended in various ways to make the writing of tests easier and customize the feed-
back you get from running tests. Here are common starting points to extend PHPUnit.

Subclass PHPUnNit_Framework TestCase

Write custom assertions and utility methods in an abstract subclass of
PHPUni t _Fr amewor k_Test Case and derive your test case classes from that class. Thisis one
of the easiest waysto extend PHPUnit.

Write custom assertions

When writing custom assertions it is the best practice to follow how PHPUnit's own assertions
are implemented. As you can see in Example 19.1, “The assertTrue() and isTrug() methods of
the PHPUNit_Framework Assert class’, the assert True() method isjust a wrapper around the
i sTrue() and assert That () methods. i sTrue() creates a matcher object that is passed on
toassert That () for evaluation.

Example 19.1. The assertTrue() and isTrug) methods of the
PHPUnNIit_Framework Assert class

<?php
abstract class PHPUnit_Framework_Assert
{
public static function assertTrue($condition, $nessage = '"')
{
sel f::assert That ($condition, self::isTrue(), $message);
}

public static function isTrue()

{
}

return new PHPUNni t _Framewor k_Constraint _|sTrue

}?>

Example 19.2, “The PHPUnit Framework Constraint IsTrue class’ shows how
PHPUni t _Franmewor k_Constrai nt_| sTrue extends the abstract base class for matcher ob-
jects (or constraints), PHPUni t _Fr amewor k_Constr ai nt .

164

Extending PHPUnit

Example 19.2. The PHPUnit_Framework_Constraint_|sTrue class

<?php
cl ass PHPUni t _Franewor k_Constraint _I sTrue extends PHPUni t _Framewor k_Constrai nt

{

public function matches($ot her)

{
}

return $ot her === TRUE

public function toString()
{

}

return 'is true';

}?>

The effort of implementing the assert True() and i sTrue() methods as well as the
PHPUni t _Franmewor k_Constrai nt | sTrue class yields the benefit that assert That ()

automatically takes care of evaluating the assertion and bookkeeping tasks such as counting it for sta-
tistics. Furthermore, thei sTr ue() method can be used as amatcher when configuring mock objects.

Implement PHPUnNIit_Framework TestListener

Example 19.3, “A simple test listener” shows a simple implementation of the
PHPUni t _Framewor k_Test Li st ener interface.

Example 19.3. A ssimpletest listener

<?php
cl ass Sinpl eTestLi stener inplenments PHPUnIit _Framewor k_Test Li st ener

{
public function addError (PHPUNni t _Franmewor k_Test $test, Exception $e, $tine)

{
printf("Error while running test '%'.\n", $test->getNane());

}

public function addFail ure(PHPUNni t _Franework_Test $test, PHPUnit_Framewor k_Assertion
{ printf("Test '%' failed.\n", $test->getNane())

}

public function addl nconpl et eTest (PHPUni t _Franewor k_Test $test, Exception $e, $tine)
{ printf("Test '%' is inconplete.\n", $test->getNane());

}

public function addSki ppedTest (PHPUnit _Framewor k_Test $test, Exception $e, $tine)

{
printf("Test '%' has been skipped.\n", $test->getNane());

165

Extending PHPUnit

}
public function startTest(PHPUnit_Franmework_Test $test)
{
printf("Test '%' started.\n", $test->getNane());
}
public function endTest (PHPUnit_Franmewor k_Test $test, $tine)
{
printf("Test '%' ended.\n", $test->getNanme());
}
public function startTestSuite(PHPUnit_Framework _TestSuite $suite)
{
printf("TestSuite '%' started.\n", $suite->getNane());
}
public function endTest Suite(PHPUNnit_Framework_Test Suite $suite)
{
printf("TestSuite ' %' ended.\n", $suite->getNanme());
}
}
?>

Inthe section called “ Test Listeners” you can see how to configure PHPUNiIt to attach your test listener
to the test execution.

Subclass
PHPUnNIt_Extensions_TestDecorator

Y ou can wrap test cases or test suitesin asubclassof PHPUni t _Ext ensi ons_Test Decor at or
and use the Decorator design pattern to perform some actions before and after the test runs.

PHPUnNit shipswith two concrete test decorators: PHPUni t _Ext ensi ons_Repeat edTest and
PHPUni t _Ext ensi ons_Test Set up. Theformer is used to run atest repeatedly and only count
it asasuccessif all iterations are successful. The latter was discussed in Chapter 6, Fixtures.

Example 19.4, “The RepeatedTest Decorator” shows a cut-down version of the
PHPUni t _Ext ensi ons_Repeat edTest test decorator that illustrates how to write your own
test decorators.

Example 19.4. The Repeated T est Decor ator

<?php
requi re_once ' PHPUni t / Ext ensi ons/ Test Decor at or . php' ;

cl ass PHPUni t _Ext ensi ons_Repeat edTest extends PHPUni t _Ext ensi ons_Test Decor at or
{

private $tinmesRepeat = 1;

public function __construct (PHPUni t_Framework_Test $test, $tinesRepeat = 1)

{
parent:: _construct ($test);
if (is_integer($ti mesRepeat) &&
$ti mesRepeat >= 0) {
$t hi s->ti mresRepeat = $ti nesRepeat ;
}
}

166

Extending PHPUnit

public function count()

{
return $this->ti nesRepeat * $this->test->count();
}
public function run(PHPUnit_Franework _Test Result $result = NULL)
{
if ($result === NULL) {
$result = $this->createResult()
}
for ($i = 0; $i < $this->ti mesRepeat && ! $result->shoul dStop(); $i++) {
$t hi s- >t est->run($resul t)
}
return $result;
}
}
?>

Implement PHPUnNIt_Framework_Test

The PHPUni t _Framewor k_Test interface is narrow and easy to implement. You
can write an implementation of PHPUnit _ Franmewor k_Test that is simpler than
PHPUNi t _Fr anewor k_Test Case and that runs data-driven tests, for instance.

Example 19.5, “A data-driven test” shows a data-driven test case class that compares values from a
file with Comma-Separated Vaues (CSV). Each line of such afile looks like f oo; bar , where the
first value is the one we expect and the second value is the actual one.

Example 19.5. A data-driven test

<?php
cl ass DataDrivenTest inplenments PHPUnit_Framewor k_Test

{

private $lines;

public function __construct($dataFile)

{
$this->lines = file($dataFile);
}
public function count()
{
return 1
}
public function run(PHPUNni t_Framework_Test Result $result = NULL)
{
if ($result === NULL) {

$result = new PHPUni t _Franmewor k_Test Resul t ;

}

foreach ($this->lines as $line) {
$resul t->start Test ($this);
PHP Tinmer::start();
$stopTi me = NULL

l'i st($expected, $actual) = explode(';', $line);

try {
PHPUNi t _Framewor k_Assert: : assert Equal s(

167

Extending PHPUnit

trim $expected), trim $actual)
IE
}

catch (PHPUni t _Franmewor k_AssertionFail edError $e) {
$stopTime = PHP_Ti ner: :stop();
$resul t->addFai lure($this, $e, $stopTine);

}

catch (Exception $e) {
$stopTime = PHP_Ti ner: : stop();
$result->addError ($this, $e, $stopTine);
}

if ($stopTime === NULL) {
$stopTime = PHP_Ti ner: : stop();
}

$resul t->endTest ($this, $stopTinme);
}

return $result;

}

$test = new DataDrivenTest('data_file.csv');

$result = PHPUnit_Text U _Test Runner::run($test);
?>

PHPUNit 3.7.0 by Sebastian Ber gnann.
.F

Time: 0 seconds

There was 1 failure:

1) DataDrivenTest

Fail ed asserting that two strings are equal .
expected string <bar>

di fference < x>

got string <baz>

/ honme/ sb/ Dat aDr i venTest . php: 32

/ honme/ sb/ Dat aDr i venTest . php: 53

FAI LURES!
Tests: 2, Failures: 1.

168

Appendix A. Assertions

Table A.1, “Assertions’ shows all the varieties of assertions.

Table A.1. Assertions

Assertion

assert ArrayHasKey($key, $array, $message = '')

assert ArrayNot HasKey($key, $array, $nessage = '')

assert Attri but eCont ai ns($needl e, $haystackAttri buteNane,
$hayst ackd assOr Obj ect, $nessage = '', $ignoreCase = FALSE,

$checkFor oj ectl dentity = TRUE)

assertAttributeContai nsOnl y($type, $haystackAttri buteNane,

$hayst ackd assOr Chj ect, $isNativeType = NULL, $nessage = '"')
assert Attri but eCount ($expect edCount, $haystackAttri buteNamne,
$hayst ackd assOr Cbj ect, $nessage = '')

assert Attri but eEnpt y($hayst ackAttri but eNanme, $haystackC assO Ob-
ject, $nessage = '")

assert Attri but eEqual s($expect ed, $actual Attribut eNanme, $actual -

G assOrObj ect, $nmessage = '', $delta = 0, $nmaxDepth = 10, $canoni -

calize = FALSE, $ignoreCase = FALSE)

assert Attri but eG eat er Than($expect ed, $actual Attri but eNanme, $act u-

al d assOr oj ect, $nessage = '')

assertAttri but eG eat er ThanOr Equal ($expect ed, $actual Attri but eNane,
$act ual A assOr Obj ect, $nessage = '')

assert Attributel nstanceCf ($expected, $attributeNanme, $classO h-
ject, $nessage = '")

assert Attri butel nternal Type($expected, $attributeNane, $classO Ob-
ject, $nessage = "'"')

assert Attribut eLessThan($expect ed, $actual AttributeNane, $actual -
Cl assOr Obj ect, $nmessage = '")

assert Attri buteLessThanOr Equal ($expect ed, $actual Attri but eNane,
$act ual A assOr Obj ect, $nessage = '")

assert Attri but eNot Cont ai ns($needl e, $haystackAttri buteNane,

$hayst ackd assOr bj ect, $nessage = '', $ignoreCase = FALSE,

$checkFor Qoj ectl dentity = TRUE)

assert Attri but eNot Cont ai nsOnl y($type, $haystackAttri but eNane,

$hayst ackd assOr Obj ect, $isNativeType = NULL, $nmessage = '')
assert At tri but eNot Count ($expect edCount, $hayst ackAttri but eNane,
$hayst ackd assOr Chj ect, $nessage = '')

assert Attri but eNot Enpt y($hayst ackAttri but eNane, $haystackC as-
sOr Obj ect, $nessage = ''")

assert Attri but eNot Equal s($expect ed, $actual AttributeNane, $actual -
ClassOr Obj ect, $message = '', $delta = 0, $nmaxDepth = 10, S$canoni -
calize = FALSE, $ignoreCase = FALSE)

assert Attri buteNot I nstanceOf ($expect ed, S$attri buteName, $cl as-
sOr Obj ect, $nmessage = '")

assertAttributeNotl nternal Type($expected, $attributeNanme, $clas-
sOr hj ect, $nessage = ''")

169

Assertions

Assertion

assert Attri but eNot Same($expect ed, $actual Attri but eName, $actual -
C assOr Obj ect, $nessage = '')

assert Attribut eSane($expect ed, $actual AttributeNanme, $actual d as-
sOr hj ect, $nessage = ''")

assertd assHasAttri bute($attri buteNanme, $cl assNanme, $nessage = '')

assertd assHasStati cAttribute($attri buteNane, $classNane, $nessage

=)

assert C assNot HasAttri bute($attri buteNane, $cl assName, $nmessage =
)

assert C assNot HasStati cAttri bute($attributeNane, $cl assName, $nes-
sage = '")

assert Cont ai ns($needl e, $haystack, $nmessage = , $ignoreCase =
FALSE, $checkFor Objectldentity = TRUE)

assert Cont ai nsOnl y($t ype, $haystack, $isNativeType = NULL, $nes-
sage = '")

assert Cont ai nsOnl yl nst ancesO ($cl assnane, $haystack, $nessage =

")

assert Count ($expect edCount, $haystack, $nessage = '")

assert Enpty($actual, $nessage = '')

assert Equal XM_St r uct ur e(DOVEIl enent $expect edEl enent, DOVEl enent
$act ual El enent, $checkAttributes = FALSE, $nessage = '')

assert Equal s($expected, S$actual, $nmessage = '', $delta = 0,
$maxDepth = 10, $canonicalize = FALSE, $ignoreCase = FALSE)

assert Fal se($condi ti on, $nessage = "'"')

assert Fi | eEqual s($expected, S$actual, $nessage = , $canonicalize
= FALSE, $ignoreCase = FALSE)

assertFil eExi sts($fil ename, $nessage = '')

assert Fi | eNot Equal s($expect ed, $actual, $message = , $canoni cal -
i ze = FALSE, $ignoreCase = FALSE)

assert Fi |l eNot Exi sts($fil enane, $nessage = '')

assert Great er Than($expect ed, $actual, $nessage = '')

assert G eat er ThanOr Equal ($expect ed, $actual, $nessage = '')

assertlnstanceO ($expected, $actual, $nessage = '')

assert | nternal Type($expected, $actual, $nessage = '"')

assert JsonFi | eEqual sJsonFi | e($expect edFil e, $actual File, $nessage

=)

assert JsonFi | eNot Equal sJsonFi | e($expect edFil e, $actual File, $nes-
sage = '")

assertJsonStri ngEqual sJsonFi | e($expect edFi | e, $actual Json, $mes-
sage = '")

assertJsonStringEqual sJsonStri ng($expect edJson, $actual Json, $nes-
sage = '")

assert JsonSt ri ngNot Equal sJsonFi | e($expect edFi |l e, $act ual Json,
$nessage = ')

assert JsonSt ri ngNot Equal sJsonStri ng($expect edJson, $actual Json,
$nessage = ')

170

Assertions

Assertion

assert LessThan($expect ed, $actual, $message = '')

assert LessThanOr Equal ($expect ed, S$actual, $nessage = '')

assert Not Cont ai ns($needl e, $haystack, $nmessage = '', $ignoreCase =

FALSE, $checkFor Objectldentity = TRUE)

assert Not Cont ai nsOnl y($type, $haystack, $isNativeType = NULL,
$nessage = ')

assert Not Count ($expect edCount, $haystack, $nmessage = '')

assert Not Enpt y($actual , $nessage = '')

assert Not Equal s($expect ed, $actual, $nessage = '', $delta = O,
$maxDepth = 10, $canoni calize = FALSE, $ignoreCase = FALSE)

assert Not | nst anceCf ($expect ed, $actual, S$nessage = '')

assert Not | nt er nal Type($expected, $actual, $nmessage = '')

assert Not Nul | ($actual, $nessage = '')

assert Not RegExp($pattern, $string, $nessage = '')

assert Not Same($expect ed, $actual, $nessage = '"')

assert Not SameSi ze($expect ed, $actual, $nessage = '"')

assert Not Tag($mat cher, $actual, $message = '', $isH nl = TRUE)

assert Nul | ($actual, $nessage = '')

assert Obj ect HasAttri bute($attri buteName, $object, $nmessage = '')

assert Obj ect Not HasAt tri bute($attri buteName, $object, $nessage =
)

assert RegExp($pattern, $string, $message = '')

assert Same($expect ed, $actual, $nessage = '')

assert SameSi ze($expect ed, $actual, $nessage = '')

assert Sel ect Count ($sel ector, $count, $actual, $nmessage =
$isH M = TRUE)

assert Sel ect Equal s($sel ector, $content, $count, $actual, $nmessage
='', $isHnl = TRUE)

assert Sel ect RegExp($sel ector, $pattern, $count, $actual, $nmessage
='", $isHtm = TRUE)

assert StringEndsNot Wt h($suffix, $string, $nessage = "'"')

assert StringEndsWth($suffix, $string, $nessage = '")

assert StringEqual sFi | e($expectedFile, $actual String, $nessage =
"', $canoni calize = FALSE, $ignoreCase = FALSE)

assert StringMat chesFormat ($format, $string, $nessage = '')

assert StringhvatchesFormat Fil e($fornmatFile, $string, $nessage ='')

assert StringNot Equal sFi | e($expectedFi |l e, $actual String, $message =
"', $canonicalize = FALSE, $ignoreCase = FALSE)

assert StringNot Mat chesFor mat ($f or mat, $string, $nessage = '')

assert StringNot Mat chesFormat Fil e($formatFile, $string, $nessage =

")

assertStringStartsNotWth($prefix, $string, $nmessage = '")
assertStringStartsWth($prefix, $string, $nessage = '')
assert Tag($mat cher, $actual, $message = '', $isHm = TRUE)

171

Assertions

Assertion

assert That ($val ue, PHPUnit _Franmewor k_Constrai nt $constraint, $nes-
sage = '")

assert True($conditi on, $nessage = '"')

assert Xnl Fi | eEqual sXnl Fi | e($expectedFil e, $actual File, $nessage =
")

assert Xnl Fi | eNot Equal sXm Fi | e($expectedFil e, $actual File, $nmessage
=)

assert Xm Stri ngEqual sXm Fi | e($expect edFil e, $actual Xm , $message =
)

assert Xm Stri ngEqual sXm Stri ng($expectedXm , $actual Xnl, $nmessage
=)

assert Xnml Stri ngNot Equal sXml Fi | e($expect edFil e, $actual Xm , $nes-
sage = '")

assert Xm Stri ngNot Equal sXm Stri ng($expect edXm , $actual Xm , $nes-
sage = '")

172

Appendix B. Annotations

An annotation is a specia form of syntactic metadata that can be added to the source code of some
programming languages. While PHP has no dedicated language feature for annotating source code,
the usage of tagssuch as @nnot at i on ar gunent s in documentation block has been established
in the PHP community to annotate source code. In PHP documentation blocks are reflective: they
can be accessed through the Reflection API's get DocCommrent () method on the function, class,
method, and attribute level. Applications such as PHPUnit use thisinformation at runtimeto configure
their behaviour.

This appendix shows all the varieties of annotations supported by PHPUnit.

@ut hor

The @ut hor annotation is an alias for the @r oup annotation (see the section called “@r oup”)
and allows o filter tests based on their authors.

@ackupd obal s

The backup and restore operations for global variables can be completely disabled for all tests of a
test case classlike this

/**
* @ackupd obal s di sabl ed
*/
cl ass MyTest extends PHPUnit_Framewor k_Test Case
{
I
}

The @ackupd obal s annotation can also be used on the test method level. Thisalowsfor afine-
grained configuration of the backup and restore operations:

/**
* @ackupd obal s di sabl ed
>/
cl ass MyTest extends PHPUnit _Framewor k_Test Case

{

/**

* @ackupd obal s enabl ed

>/
public function testThatlnteractsWthd obal Vari abl es()
{

}

/1

@ackupStati cAttri butes

The backup and restore operations for static attributes of classes can be completely disabled for all
tests of atest case classlike this

/**
* @ackupStaticAttributes disabled
*/
cl ass MyTest extends PHPUnit _Framewor k_Test Case

173

Annotations

/1

The @ackupStati cAttri butes annotation can also be used on the test method level. This
allows for afine-grained configuration of the backup and restore operations:

/**
* @ackupStaticAttributes disabl ed
*/
cl ass MyTest extends PHPUnit_Framewor k_Test Case

{

/**

* @ackupStaticAttributes enabl ed

*/
public function testThatlnteractsWthStati cAttributes()
{

}

/1

@odeCover agel gnor e*

The @odeCover agel gnor e, @odeCover agel gnoreSt art and @odeCover agel g-
nor eEnd annotations can be used to exclude lines of code from the coverage analysis.

For usage see the section called “Ignoring Code Blocks’.

@overs

The @over s annotation can be used in the test code to specify which method(s) a test method

wants to test:
/**
* @overs BankAccount: : get Bal ance
*/
public function testBal ancelslnitiallyZero()
{

$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());
}

If provided, only the code coverage information for the specified method(s) will be considered.

Table B.1, “Annotations for specifying which methods are covered by atest” showsthe syntax of the
@over s annotation.

Table B.1. Annotationsfor specifying which methods are covered by atest

Annotation Description

@overs C assNane: : net hodName Speci fies that the annotated
test method covers the specified
met hod.

@overs Cl assNanme Speci fies that the annotated

test nmethod covers all nethods
of a given class.

@overs C assNane<ext ended> Speci fies that the annotated
test nethod covers all nethods

174

Annotations

Annotation Description

of a given class and its parent
class(es) and interface(s).

@overs d assNane: : <public> Specifies that the annotated
test nethod covers all public
met hods of a given cl ass.

@overs O assNane: : <protect ed> Speci fies that the annotated
test method covers all protected
met hods of a given cl ass.

@overs Cl assNane: : <privat e> Speci fies that the annotated
test nethod covers all private
met hods of a given cl ass.

@overs C assNane: : <! public> Speci fies that the annotated
test nethod covers all nethods
of a given class that are not
publi c.

@overs ClassNane:: <!protected> |[Specifies that the annotated
test nethod covers all nethods
of a given class that are not
pr ot ect ed.

@overs C assNane: : <! private> Speci fies that the annotated
test nethod covers all nethods
of a given class that are not
private.

@overs ::functionName Speci fies that the annotated
test nmethod covers the specified
gl obal functi on.

@over sNot hi ng

The @over sNot hi ng annotation can be used in the test code to specify that no code coverage
information will be recorded for the annotated test case.

This can be used for integration testing. See Example 14.3, “ A test that specifiesthat no method should
be covered” for an example.

The annotation can be used on the class and the method level and will override any @ over s tags.

aPr ovi der

A test method can accept arbitrary arguments. These arguments are to be provided by a data provider
method (pr ovi der () in Example 4.4, “Using a data provider that returns an array of arrays’). The
data provider method to be used is specified using the @lat aPr ovi der annotation.

See the section called “ Data Providers’ for more details.

@lepends

PHPUnNIt supports the declaration of explicit dependencies between test methods. Such dependencies
do not define the order in which the test methods are to be executed but they allow the returning of
an instance of the test fixture by a producer and passing it to the dependent consumers. Example 4.2,
“Using the @epends annotation to express dependencies’ shows how to use the @epends anno-
tation to express dependencies between test methods.

175

Annotations

See the section called “ Test Dependencies’ for more details.

@xpect edExcepti on

Example 4.7, “Using the @expectedException annotation” shows how to use the @xpect edEx-
cept i on annotation to test whether an exception is thrown inside the tested code.

See the section called “ Testing Exceptions” for more details.

@xpect edExcept i onCode

The @xpect edExcept i onCode annotation, in conjunction with the @xpect edExcept i on
allows making assertions on the error code of a thrown exception thus being able to narrow down a
specific exception.

cl ass MyTest extends PHPUnit _Framewor k_Test Case

{
/**
* @xpect edException M/Excepti on
* @xpect edExcepti onCode 20
>/
public function testExcepti onHasErrorcode20()
{
t hr ow new MyException(' Sone Message', 20);
}
}

To ease testing and reduce duplication a shortcut can be used to specify a class constant as an @x-
pect edExcept i onCode using the "@xpect edExcepti onCode C assNane: : CONST"

syntax.
cl ass MyTest extends PHPUnit_Framewor k_Test Case
{
/**
* @xpect edExcepti on M/Excepti on
* @xpect edExcepti onCode Myd ass: : ERRORCODE
*/
public function testExcepti onHasErrorcode20()
{
t hrow new MyException(' Some Message', 20);
}
}
cl ass Myd ass
{
const ERRORCCDE = 20
}

@xpect edExcept i onMessage

The @xpect edExcept i onMessage annotation works similar to @xpect edExcepti on-
Code asit lets you make an assertion on the error message of an exception.

cl ass MyTest extends PHPUnit _Framewor k_Test Case

{
/**
* @xpect edException M/Excepti on
* @xpect edExcepti onMessage Sone Message
*
/

public function testExcepti onHasRi ght Message()

176

Annotations

t hrow new MyException(' Sone Message', 20);
}
The expected message can be a substring of the exception Message. This can be useful to only assert
that a certain name or parameter that was passed in shows up in the exception and not fixate the whole

exception message in the test.

cl ass MyTest extends PHPUnit_Framewor k_Test Case

{
/**
* @xpect edExcepti on M/Excepti on
* @xpect edExcepti onMessage broken
*/
public function testExcepti onHasRi ght Message()
{
$param = "broken";
throw new MyException('Invalid paraneter "'.$param'".', 20);
}
}

To ease testing and reduce duplication a shortcut can be used to specify a class con-
stant as an @xpect edExcepti onMessage using the "@xpect edExcepti onMessage
Cl assNane: : CONST" syntax. A sample can be found in the section called “ @xpect edExcep-
ti onCode”.

@r oup

A test can be tagged as belonging to one or more groups using the @r oup annotation like this

cl ass MyTest extends PHPUnit_Framewor k_Test Case

{
/**
* @roup specification
*/
public function testSonething()
{
}
/**
* @roup regresssion
* @roup bug2204
*/
public function testSomethingEl se()
{
}
}

Tests can be selected for execution based on groups using the - - gr oup and - - excl ude- gr oup
switches of the command-line test runner or using the respective directives of the XML configuration
file.

@ut put Buf feri ng

The @ut put Buf f eri ng annotation can be used to control PHP's output buffering [http://
www.php.net/manual/en/intro.outcontrol.php] like this

/**

* @ut put Buf feri ng enabl ed

177

http://www.php.net/manual/en/intro.outcontrol.php
http://www.php.net/manual/en/intro.outcontrol.php
http://www.php.net/manual/en/intro.outcontrol.php

Annotations

>/
cl ass MyTest extends PHPUnit _Framewor k_Test Case

{
}

/1

The @ut put Buf f er i ng annotation can also be used on the test method level. This alows for
fine-grained control over the output buffering:

/**
* @ut put Buf f eri ng di sabl ed
*/
cl ass MyTest extends PHPUnit_Framewor k_Test Case
{
/**
* @ut put Buf feri ng enabl ed
*/
public function testThatPrintsSomething()
{
I
}
}

@pr eserved obal St at e

When atest is run in a separate process, PHPUnit will attempt to preserve the global state from
the parent process by serializing all globals in the parent process and unserializing them in the child
process. This can cause problems if the parent process contains globals that are not serializable. To
fix this, you can prevent PHPUnit from preserving global statewiththe @r eser ved obal St at e
annotation.

cl ass MyTest extends PHPUnit_Framewor k_Test Case
{

/**

* @ unl nSepar at ePr ocess
* @reserved obal State di sabl ed
*/
public function testlnSeparateProcess()

{
}

I

}

@ equi res

The @ equi r es annotation can be used skip tests when common preconditions, like the PHP Ver-
sion or installed extensions, are not met.

A completelist of possibilities and examples can be found at Table 9.3, “Possible @requires usages’

@ unTest sl nSepar at eProcesses

Indicatesthat all testsin atest class should be run in a separate PHP process.

/**

* @unTest sl nSepar at ePr ocesses

*/

cl ass MyTest extends PHPUnit _Framewor k_Test Case

{

178

Annotations

/1
}

Note: By default, PHPUnit will attempt to preserve the global state from the parent process by seri-
alizing al globals in the parent process and unserializing them in the child process. This can cause

problemsif the parent process contains global sthat are not serializable. Seethe section called “ @r e-
served obal St at e” for information on how to fix this.

@ unl nSepar at ePr ocess

Indicates that atest should be run in a separate PHP process.

cl ass MyTest extends PHPUnit _Framewor k_Test Case

{
/**
* @unl nSepar at ePr ocess
>/
public function testlnSeparateProcess()
{
I
}
}

Note: By default, PHPUnit will attempt to preserve the global state from the parent process by seri-
alizing al globals in the parent process and unserializing them in the child process. This can cause
problemsif the parent process contains global sthat are not serializable. Seethe section called “ @r e-

served obal St at e” for information on how to fix this.

@ est

Asan alternative to prefixing your test method nameswitht est , you can usethe @ est annotation
in amethod's DocBlock to mark it as a test method.

/**
* @est
*/
public function initial Bal anceShoul dBe0()
{
$t hi s- >assert Equal s(0, $this->ba->getBal ance());
}

@ est dox

@1 cket

179

Appendix C. The XML Configuration

File

PHPUnNit

The attributes of the <phpuni t > element can be used to configure PHPUnit's core functionality.

<phpunit backupd obal s="true"

<!--

backupStati cAttri butes="fal se"
<!l --boot strap="/pat h/to/ boot strap. php"-->
cacheTokens="fal se"
col ors="fal se"
convert Error sToExcepti ons="true"
convert Noti cesToExcepti ons="true"
convert War ni ngsToExcepti ons="true"
forceCover sAnnot ati on="f al se"
mapTest Cl assNaneToCover edCl assNane="f al se"
printerC ass="PHPUnit_Text U _ResultPrinter”
<I--printerFile="/path/to/ResultPrinter.php"-->
processl sol ati on="f al se"
st opOnError ="fal se"
st opOnFai | ure="f al se"
st opOnl nconpl et e="f al se"
st opOnSki pped="f al se"
t est Sui t eLoader Cl ass="PHPUni t _Runner St andar dTest Sui t eLoader"
<I--test SuitelLoaderFil e="/path/to/ StandardTest Sui t eLoader . php"-->
strict="fal se"
ver bose="f al se">
-->

</ phpuni t >

The XML configuration above corresponds to the default behaviour of the TextUI test runner docu-
mented in the section called * Command-Line switches’.

Additional optionsthat are not available as command-line switches are:

convert Error sToExcep- By default, PHPUnit will install an error handler that converts

tions

the following errorsto exceptions:
* E_WARNI NG

« E_NOTI CE

E_USER_ERROR

E_USER WARNI NG
« E_USER NOTI CE

E_STRICT

E_RECOVERABLE_ERROR
« E_DEPRECATED
 E_USER_DEPRECATED

Set convert ErrorsToExceptions tof al se todisable
this feature.

180

The XML Configuration File

convert Noti cesToExcep- When set to f al se, the error handler installed by con-
tions vert Error sToExcepti ons will not convert E_NOTI CE,
E _USER NOTI CE, or E_STRI CT errorsto exceptions.

conver t War ni ngsToExcep- Whensettof al se, theerror handler installed by convert -
tions Error sToExcepti ons will not convert E_WARNI NG or
E_USER WARNI NG errors to exceptions.

f or ceCover sAnnot ati on Code Coverage will only be recorded for tests that use
the @over s annotation documented in the section called
“@overs”.
Test Suites

The<t est sui t es> element and itsone or more<t est sui t e> children can be used to compose
atest suite out of test suites and test cases.

<testsuites>
<testsuite nane="M/ Test Suite">
<directory>/path/to/ *Test. php fil es</directory>
<file>/path/to/ MyTest. php</file>
<excl ude>/ pat h/ t o/ excl ude</ excl ude>
</testsuite>
</testsuites>

Using the phpVer si on and phpVer si onQper at or attributes, a required PHP version can be
specified. The example below will only add the / pat h/ t o/ * Test . php filesand / pat h/ t o/
MyTest . php fileif the PHP version is at least 5.3.0.

<testsuites>
<testsuite nane="M/ Test Suite">
<directory suffix="Test.php" phpVersi on="5.3.0" phpVersi onQperator=">=">/path/to/f
<fil e phpVersion="5.3.0" phpVersi onOperator=">=">/path/to/ MyTest. php</file>
</testsuite>
</testsuites>

ThephpVer si onOper at or attribute is optional and defaultsto >=.

Groups

The<gr oups> element and its<i ncl ude>, <excl ude>, and <gr oup> children can be used to
select groups of tests from a suite of tests that should (not) be run.

<gr oups>
<i ncl ude>
<gr oup>name</ gr oup>
</incl ude>
<excl ude>
<gr oup>name</ gr oup>
</ excl ude>
</ groups>

The XML configuration above corresponds to invoking the TextUl test runner with the following
switches:

s --group nane

e --excl ude-group nane

181

The XML Configuration File

Including and Excluding Files for Code Cov-
erage

The <filt er> element and its children can be used to configure the blacklist and whitelist for
the code coverage reporting.

<filter>
<bl ackl i st>
<directory suffix=".php">/path/to/files</directory>
<file>/path/to/file</file>
<excl ude>
<directory suffix=".php">/path/to/files</directory>
<file>/path/to/file</file>
</ excl ude>
</ bl ackl i st >
<whi telist processUncoveredFil esFromhitelist="true">
<directory suffix=".php">/path/to/files</directory>
<file>/path/to/file</file>
<excl ude>
<directory suffix=".php">/path/to/files</directory>
<file>/path/to/file</file>
</ excl ude>
</whitelist>
</filter>

Logging

The <l oggi ng> element and its <I og> children can be used to configure the logging of the test
execution

<l oggi ng>
<l og type="coverage-htm " target="/tnp/report" charset="UTF-8"
hi ghl i ght ="f al se" | owdpper Bound="35" hi ghLower Bound="70"/>
<l og type="coverage-clover" target="/tnp/coverage.xm"/>
<l og type="coverage-php" target="/tnp/coverage.serialized"/>
<l og type="coverage-text" target="php://stdout" showUncoveredFil es="fal se"/>
<l og type="json" target="/tnp/logfile.json"/>
<l og type="tap" target="/tnp/logfile.tap"/>
<log type="junit" target="/tnp/logfile.xm" |oglnconpleteSki pped="fal se"/>
<l og type="testdox-htm " target="/tnp/testdox.htm"/>
<l og type="testdox-text" target="/tnp/testdox.txt"/>
</'l oggi ng>

The XML configuration above corresponds to invoking the TextUl test runner with the following
switches:

e --coverage-htm /tnp/report

e --coverage-cl over /tnp/coverage. xm

e --coverage-php /tnp/ coverage. serialized
» --coverage-text

e --log-json /tnp/logfile.json

« > /[tnp/logfile.txt

e --log-tap /tnp/logfile.tap

182

The XML Configuration File

e --log-junit /tnp/logfile.xm
e --testdox-htm /tnp/testdox. htm
 --testdox-text /tnp/testdox.txt

The charset, highlight, |owUpperBound, highLowerBound, I oglncom
pl et eSki pped and showUncover edFi | es attributes have no equivalent TextUI test runner
switch.

e char set : Character set to be used for the generated HTML pages

» hi ghlight:Whensettotrue, thecodein your coverage reportsis syntax highlighted.
* | owUpper Bound: Maximum coverage percentage to be considered "lowly" covered.

* hi ghLower Bound: Minimum coverage percentage to be considered "highly" covered.

» showlUncover edFi | es: Show al whitelisted filesin - - cover age- t ext output not just the
ones with coverage information.

Test Listeners

The<l i st ener s> element and its<| i st ener > children can be used to attach additional test
listeners to the test execution.

<listeners>
<listener class="MListener" file="/optional/path/to/MListener.php">
<ar gument s>
<array>
<el enent key="0">
<string>Sebasti an</string>
</ el enent >
</ array>
<i nt eger >22</i nt eger >
<string>April </string>
<doubl e>19. 78</ doubl e>
<nul I />
<obj ect cl ass="stdd ass"/>
</ ar gunent s>
</listener>
</listeners>

The XML configuration above corresponds to attaching the $1 i st ener object (see below) to the
test execution:

$l i stener = new MyLi st ener (
array(' Sebastian'),
22,
"April',
19. 78,
NULL,
new st dCl ass

DE

Setting PHP INI settings, Constants and
Global Variables

The <php> element and its children can be used to configure PHP settings, constants, and global
variables. It can also be used to prepend thei ncl ude_pat h.

183

The XML Configuration File

<php>
<i ncl udePat h>. </ i ncl udePat h>
<ini nanme="foo" val ue="bar"/>
<const nanme="foo" val ue="bar"/>
<var nanme="foo" val ue="bar"/>
<env nane="foo" val ue="bar"/>
<post nane="foo" val ue="bar"/>
<get name="foo" val ue="bar"/>
<cooki e nane="foo" val ue="bar"/>
<server nane="foo" val ue="bar"/>
<fil es name="foo" val ue="bar"/>
<request nanme="foo" val ue="bar"/>

</ php>

The XML configuration above corresponds to the following PHP code:

ini_set('foo', 'bar');
define('foo', 'bar');
$GLOBALS[' foo'] = 'bar';
$ ENV['foo'] = 'bar';

$ POST['fo0'] = 'bar';

$ GET['fo0'] = 'bar';

$ COXKIE['foo'] = 'bar';
$ SERVER['fo00'] = 'bar';
$ FILES['foo'] = 'bar';

$ REQUEST['foo'] = 'bar';

Configuring Browsers for Selenium RC

The<sel eni une element and its<br owser > children can be used to configure alist of Selenium
RC servers.

<sel eni unm>
<browser nane="Firefox on Linux"
browser="*firefox /usr/lib/firefox/firefox-bin"
host ="ny. | i nux. box"
port ="4444"
ti meout ="30000"/ >
</ sel eni une

The XML configuration above corresponds to the following PHP code:

cl ass WebTest extends PHPUnit_Ext ensi ons_Sel eni uniTest Case

{
public static $browsers = array(
array(
' nang' => 'Firefox on Linux'
"browser' => "*firefox /usr/lib/firefox/firefox-bin'
" host"' => 'ny. | inux. box'
'port' => 4444,
"timeout' => 30000
)
DE
/1
}

184

Appendix D. Index

Index

Symbols
$backupGlobal sBlacklist, 86
$backupStaticAttributesBlacklist, 86
@assert, 148
@author, , 173
@backupGlobals, 86, 173, 173
@backupStaticAttributes, 86, 173, 174
@codeCoveragelgnore, 143, 174
@codeCoveragelgnoreEnd, 143, 174
@codeCoveragel gnoreStart, 143, 174
@covers, 141, 174
@coversNothing, 142, 175
@dataProvider, 12, 15, 15, 15, 175
@depends, 10, 15, 15, 15, 175
@expectedException, 15, 16, 176
@expectedExceptionCode, 16, 176
@expectedExceptionMessage, 16, 176
@group, , , , 177
@outputBuffering, 177, 178
@preserveGlobal State, 178
@requires, 178, 178
@runinSeparateProcess, 179
@runT estslnSeparateProcesses, 178
Otest, , 179
@testdox, 179
@ticket, 179

A

Agile Documentation, , , 145
Annctation, 10, , 10, 12, 15, 15, 15, 15, 16, ,
anything(),

arrayHasKey(),

assertArrayHasKey(), 22,
assertArrayNotHasK ey(), 22,
assertAttributeContains(), 24,
assertAttributeContainsOnly(), 26,
assertAttributeCount(),
assertAttributeEmpty (), 29,
assertAttributeEquals(), 32,
assertAttributeGreaterThan(), 41,
assertAttributeGreaterThanOrEqual (), 42,
assertAttributel nstanceOf (), 43,
assertAttributel nternal Type(), 44,
assertAttributel essThan(), 48,
assertAttributel essThanOrEqual (), 48,
assertAttributeNotContains(), 24,
assertAttributeNotContainsOnly(), 26,
assertAttributeNotCount(),
assertAttributeNotEmpty(), 29,
assertAttributeNotEquals(), 32,
assertAttributeNotl nstanceOf(), 43,

, 141, 142, 143, 148, 173

185

Index

assertAttributeNotl nternal Type(), 44,
assertAttributeNotSame(), 54,
assertAttributeSame(), 54,
assertClassHasAttribute(), 23,
assertClassHasStati cAttribute(), 24,
assertClassNotHasAttribute(), 23,
assertClassNotHasStati cAttribute(), 24,
assertContains(), 24,
assertContainsOnly(), 26,
assertContainsOnlyl nstancesOf(), 27,
assertCount(), 28,

assertEmpty(), 29,

assertEquals(), 32,

assertEqual XML Structure(), 30,
assertFalse(), 38,

assertFileEquals(), 39,
assertFileExists(), 40,
assertFileNotEquals(), 39,
assertFileNotExists(), 40,
assertGreater Than(), 41,
assertGreater ThanOrEqual (), 42,
assertlnstanceOf (), 43,

assertInterna Type(), 44,

Assertions, 2

assertJsonkileEqual slsonFile(), 45,
assertJsonkileNotEqual sisonFile(), 45,
assertJsonStringEqual sJsonFile(), 46,
assertJsonStringEqual sJsonString(), 46,
assertJsonStringNotEqual sJsonFile(), 46,
assertJsonStringNotEqual sJsonString(), 46,
assertLessThan(), 48,
assertLessThanOrEqual (), 48,
assertNotContains(), 24,
assertNotContainsOnly(), 26,
assertNotCount(), 28,
assertNotEmpty(), 29,
assertNotEquals(), 32,

assertNotl nstanceOf(), 43,
assertNotlnterna Type(), 44,
assertNotNull(), 49,
assertNotRegEXp(), 51,
assertNotSame(), 54,
assertNotSameSize(),

assertNotTag(), 64,

assertNull(), 49,
assertObjectHasAttribute(), 50,
assertObjectNotHasAttribute(), 50,
assertPostConditions(), 83
assertPreConditions(), 83
assertRegEXp(), 51,

assertSame(), 54,

assertSameSize(),

assertSel ectCount(), 56,
assertSelectEquals(), 58,

assertSel ectRegEXp(), 59,
assertStringEndsNotWith(), 61,
assertStringEndswith(), 61,
assertStringEqualskile(), 62,

186

Index

assertStringM atchesFormat(), 52,
assertStringM atchesFormatFile(), 53,
assertStringNotEqualskile(), 62,
assertStringNotM atchesFormat(), 52,
assertStringNotM atchesFormatFile(), 53,
assertStringStartsNotWith(), 63,
assertStringStartswith(), 63,

assertTag(), 64,

assertThat(), 66,

assertTrue(), 68,
assertXmiFileEqualsXmiFile(), 69,
assertXmiFileNotEqualsXmiFile(), 69,
assertXmi StringequalsXmlFile(), 70,
assertXml StringEqualsXmi String(), 71,
assertXmi StringNotEqualsXmiFile(), 70,
assertXml StringNotEqualsXmiString(), 71,
attribute(),

attributeEqual To(),

Automated Documentation, 145
Automated Test, 2

B

Behaviour-Driven Development, 133
Blacklist, 143, 182

C

classHasAttribute(),

classHasStati cAttribute(),

Code Coverage, , , , , 139, 143, 174, 182
Configuration, ,

Constant, 183

containg(),

containsOnly(),

containsOnlylnstancesOf(),

D

Data-Driven Tests, 167

Defect Localization, 11
Depended-On Component, 112
Design-by-Contract, 128
Documenting Assumptions, 145
Domain-Driven Design, 133

E

equaTo(),

Error, 77

Error Handler, 19

expects(), 113, 114, 114, 115, 115, 116, 116, 117
Extreme Programming, 128, 133, 145

F
Failure, 77
fileExists(),
Fixture, 82
Fluent Interface, 112

187

Index

G

getMock(), 113, 114, 115, 115, 116, 116, 117
getMockBuilder(), 114
getMockForAbstractClass(), 120
getMockFromWidl (), 121

Global Variable, 86, 183

greaterThan(),

greaterThanOrEqual (),

H
hasAttribute(),

identical To(),

include path,

Incomplete Test, 108, 147
isFalse(),

islnstanceOf(),

isNull(),

isTrue(),

isType(),

JSON,

L

lessThan(),
lessThanOrEqual (),
Lodfile, ,
Logging, 160, 182
logica And(),
logicalNot(),
logica Or(),

logical Xor(),

M
matchesRegul arExpression(),
method(), 113, 114, 114, 115, 115, 116, 116, 117
Mock Object, 117, 119

O

onConsecutiveCalls(), 116
onNotSuccessful Test(), 83

P

PHP Error, 19

PHP Notice, 19

PHP Warning, 19

php.ini, 183

PHPUnNIt_Extensions RepeatedTest, 166
PHPUnNit_Extensions Selenium2TestCase, 152
PHPUnNit_Extensions SeleniumTestCase, 153
PHPUnNit_Extensions Story TestCase, 133
PHPUnNit_Extensions TestDecorator, 166
PHPUnNIt_Extensions TestSetup, 166
PHPUnNit_Framework Assert, 131

188

Index

PHPUnNit_Framework_Error, 19
PHPUnNit_Framework_Error_Notice, 20
PHPUnNit_Framework_Error_Warning, 20
PHPUnNit_Framework_IncompleteTest, 108
PHPUnNit_Framework_IncompleteTestError, 108
PHPUnNit_Framework_Test, 167
PHPUnNit_Framework_TestCase, 10, 164
PHPUnNit_Framework_TestListener, , 165, 183
PHPUnNit_Runner_TestSuitel oader,
PHPUnNit_Util_Printer,

Process | solation,

R
Refactoring, 126
Report,
returnArgument(), 114
returnCallback(), 116
returnSelf(), 115
returnValue(), 113, 114
returnValueMap(), 115

S

Selenium RC, 184
Selenium Server, 152
setUp(), 82, 83, 83
setUpBeforeClass, 85
setUpBeforeClass(), 83, 83
Skeleton Generator, 147
stringContains(),
stringEndsWith(),
stringStartswith(),

Stub, 112

Stubs, 146

System Under Test, 112

T
tearDown(), 82, 83, 83
tearDownAfterClass, 85
tearDownAfterClass(), 83, 83

Template Method, 82, 83, 83, 83

Test Dependencies, 10

Test Double, 112

Test Groups, , , , 181
Test Isolation, , , , 86
Test Listener, 183

Test Suite, 87, 181

Test-Driven Development, 128, 133
Test-First Programming, 128

TestDox, 145, 179

throwException(), 117

U
Unit Test, 1, 128

W

Whitelist, 143, 182
will(), 113, 114, 114, 115, 115, 116, 116, 117

189

Index

X

Xdebug, 139
XML Configuration, 88

190

Appendix E. Bibliography
[Astels2003] Test Driven Development. David Astels. Copyright © 2003. Prentice Hall. ISBN 0131016490.

[Astels2006] A New Look at Test-Driven Development. David Astels. Copyright © 2006. http://
blog.daveastels.com/filessBDD_Intro.pdf.

[Beck2002] Test Driven Development by Example. Kent Beck. Copyright © 2002. Addison-Wesley. ISBN
0-321-14653-0.

[Meszaros2007] xUnit Test Patterns: Refactoring Test Code. Gerard Meszaros. Copyright © 2007. Addison-Wes-
ley. ISBN 978-0131495050.

191

Appendix F. Copyright

Copyright (c) 2005-2012 Sebasti an Ber gnann.

This work is licensed under the Creative Commons Attribution 3.0
Unported License

A summary of the license is given below, followed by the full |egal
text.

You are free:

* to Share - to copy, distribute and transnit the work
* to Remix - to adapt the work

Under the follow ng conditions:

Attribution. You nust attribute the work in the manner specified by
the author or licensor (but not in any way that suggests that they
endorse you or your use of the work).

* For any reuse or distribution, you nust nmake clear to others
the license terms of this work. The best way to do this is with
alink to this web page

* Any of the above conditions can be waived if you get
perm ssion fromthe copyright hol der.

* Nothing in this license inpairs or restricts the author's nora
rights.

Your fair dealing and other rights are in no way affected by the
above.

This is a human-readabl e sunmary of the Legal Code (the ful
l'i cense) bel ow.

Creative Commons Legal Code
Attribution 3.0 Unported

CREATI VE COMMONS CORPORATION IS NOT A LAW FI RM AND DOES NOT PROVI DE
LEGAL SERVI CES. DI STRIBUTI ON OF THI S LI CENSE DOES NOT CREATE AN
ATTORNEY- CLI ENT RELATI ONSHI P. CREATI VE COMMONS PROVI DES THI S

| NFORVATI ON ON AN "AS-1S" BASI S. CREATI VE COWONS MAKES NO
WARRANTI ES REGARDI NG THE | NFORVATI ON PROVI DED, AND DI SCLAI MS

LI ABI LI TY FOR DAVMAGES RESULTI NG FROM | TS USE.

Li cense

THE WORK (AS DEFI NED BELOW | S PROVI DED UNDER THE TERVS OF THI S
CREATI VE COVMMONS PUBLI C LI CENSE (" CCPL" OR "LICENSE"). THE WORK | S
PROTECTED BY COPYRI GHT AND/ OR OTHER APPLI CABLE LAW ANY USE OF THE
WORK OTHER THAN AS AUTHORI ZED UNDER THI S LI CENSE OR COPYRI GHT LAW
I'S PRCHI Bl TED.

BY EXERCI SI NG ANY RI GHTS TO THE WORK PROVI DED HERE, YOU ACCEPT AND
AGREE TO BE BCUND BY THE TERMS OF THI S LI CENSE. TO THE EXTENT TH S
LI CENSE MAY BE CONSI DERED TO BE A CONTRACT, THE LI CENSOR GRANTS YQOU

192

Copyright

THE RI GHTS CONTAI NED HERE | N CONSI DERATI ON OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDI TI ONS.

1. Definitions

a. "Adaptation" neans a work based upon the Work, or upon the
Work and ot her pre-existing works, such as a translation,
adaptati on, derivative work, arrangenent of nusic or other
alterations of a literary or artistic work, or phonogram or
perfornmance and i ncl udes ci nemat ographi ¢ adaptati ons or any
other formin which the Work may be recast, transforned, or
adapted including in any formrecogni zably derived fromthe
original, except that a work that constitutes a Collection
wi Il not be considered an Adaptation for the purpose of this
Li cense. For the avoi dance of doubt, where the Work is a
musi cal work, performance or phonogram the synchroni zati on of
the Work in tinmed-relation with a nmoving i mage ("synching")
wi Il be considered an Adaptation for the purpose of this
Li cense.

b. "Collection" nmeans a collection of literary or artistic works,
such as encycl opedi as and ant hol ogi es, or perfornances,
phonograns or broadcasts, or other works or subject matter
ot her than works listed in Section 1(f) bel ow, which, by
reason of the selection and arrangenent of their contents,
constitute intellectual creations, in which the Wrk is
included in its entirety in unnmodified formalong with one or
nore ot her contributions, each constituting separate and
i ndependent works in thensel ves, which together are assenbl ed
into a collective whole. A work that constitutes a Collection
wi Il not be considered an Adaptation (as defined above) for
t he purposes of this License

c. "Distribute" neans to nmake available to the public the
original and copies of the Wrk or Adaptation, as appropriate,
t hrough sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or
entities that offer(s) the Wrrk under the terns of this License

e. "Original Author" means, in the case of a literary or artistic
wor k, the individual, individuals, entity or entities who
created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of
a performance the actors, singers, nusicians, dancers, and
ot her persons who act, sing, deliver, declaim play in,
interpret or otherwise performliterary or artistic works or
expressions of folklore; (ii) in the case of a phonogramthe
producer being the person or legal entity who first fixes the
sounds of a performance or other sounds; and, (iii) in the
case of broadcasts, the organization that transnits the
br oadcast .

f. "Work" neans the literary and/or artistic work offered under
the terms of this License including without linmitation any
production in the literary, scientific and artistic donain
what ever may be the node or formof its expression including
digital form such as a book, pamphlet and other writing; a
| ecture, address, sernon or other work of the sane nature; a
dramatic or dramatico-nusical work; a choreographic work or
entertai nment in dunb show, a nusical conposition with or
wi t hout words; a cinenatographic work to which are assinil ated
wor ks expressed by a process anal ogous to cinenat ography; a
wor k of draw ng, painting, architecture, scul pture, engraving

193

Copyright

or |ithography; a photographic work to which are assinilated
wor ks expressed by a process anal ogous to photography; a work
of applied art; an illustration, map, plan, sketch or three-

di nensional work relative to geography, topography,
architecture or science; a performance; a broadcast; a
phonogram a conpilation of data to the extent it is protected
as a copyrightable work; or a work perforned by a variety or
circus perforner to the extent it is not otherw se considered
aliterary or artistic work.

g. "You" neans an individual or entity exercising rights under
this License who has not previously violated the terns of
this License with respect to the Wirk, or who has received
express permission fromthe Licensor to exercise rights under
this License despite a previous violation

h. "Publicly Perform nmeans to performpublic recitations of the
Wrk and to comunicate to the public those public
recitations, by any neans or process, including by wire or
wi rel ess neans or public digital performances; to nake
avai l able to the public Wrks in such a way that nenbers of
the public may access these Works froma place and at a pl ace
i ndi vidually chosen by them to performthe Wirk to the public
by any nmeans or process and the comunication to the public of
the perfornmances of the Wirk, including by public digita
performance; to broadcast and rebroadcast the Wrk by any
nmeans i ncl udi ng signs, sounds or inmges.

i . "Reproduce" neans to nake copies of the Wrk by any neans
including without limtation by sound or visual recordi ngs and
the right of fixation and reproducing fixations of the Wrk,
including storage of a protected performance or phonogramin
digital formor other electronic nmedium

Fair Dealing Rights. Nothing in this License is intended to
reduce, linmt, or restrict any uses free fromcopyright or rights
arising fromlimtations or exceptions that are provided for in
connection with the copyright protection under copyright |aw or
ot her applicable | aws.

Li cense Grant. Subject to the ternms and conditions of this

Li cense, Licensor hereby grants You a worl dwi de, royalty-free
non-excl usi ve, perpetual (for the duration of the applicable
copyright) license to exercise the rights in the Wrk as stated
bel ow.

a. to Reproduce the Wirk, to incorporate the Wirk into one or
nore Collections, and to Reproduce the Wrk as incorporated
in the Collections;

b. to create and Reproduce Adaptations provided that any such
Adapt ation, including any translation in any nedium takes
reasonabl e steps to clearly | abel, demarcate or otherw se
identify that changes were nade to the original Wrk. For
exanpl e, a translation could be marked "The origi nal work was
transl ated from English to Spanish," or a nodification could
indicate "The original work has been nodified.";

c. to Distribute and Publicly Performthe Wrk including as
incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptati ons.

e. For the avoi dance of doubt:

194

Copyright

i . Non-wai vabl e Conpul sory License Schemes. |In those
jurisdictions in which the right to collect royalties
through any statutory or conpul sory |icensing schene cannot
be wai ved, the Licensor reserves the exclusive right to
collect such royalties for any exercise by You of the
rights granted under this License

ii. Wiivable Compul sory License Schenes. In those
jurisdictions in which the right to collect royalties
t hrough any statutory or conpul sory licensing schene can
be wai ved, the Licensor waives the exclusive right to
collect such royalties for any exercise by You of the
rights granted under this License; and,

iii. Voluntary License Schenes. The Licensor waives the right
to collect royalties, whether individually or, in the
event that the Licensor is a nmenber of a collecting
society that administers voluntary |icensing schenes, via
that society, fromany exercise by You of the rights
granted under this License.

The above rights nay be exercised in all media and formats whet her
now known or hereafter devised. The above rights include the right
to make such nodifications as are technically necessary to exercise
the rights in other media and formats. Subject to Section 8(f), al
rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly
made subject to and limted by the follow ng restrictions

a. You may Distribute or Publicly Performthe Work only under the
terns of this License. You nmust include a copy of, or the
Uni form Resource Identifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform You may
not offer or inpose any terns on the Work that restrict the
terns of this License or the ability of the recipient of the
Wrk to exercise the rights granted to that recipient under
the ternms of the License. You nay not sublicense the Wrk. You
nmust keep intact all notices that refer to this License and to
the disclainer of warranties with every copy of the Wrk You
Distribute or Publicly Perform Wen You Distribute or
Publicly Performthe Wrk, You may not inpose any effective
t echnol ogi cal nmeasures on the Work that restrict the ability
of a recipient of the Work from You to exercise the rights
granted to that recipient under the terns of the License. This
Section 4(a) applies to the Wirk as incorporated in a
Col l ection, but this does not require the Collection apart
fromthe Work itself to be nmade subject to the terns of this
Li cense. If You create a Coll ection, upon notice from any
Li censor You nmust, to the extent practicable, renove fromthe
Collection any credit as required by Section 4(b), as
requested. If You create an Adaptation, upon notice from any
Li censor You nmust, to the extent practicable, renove fromthe
Adapt ation any credit as required by Section 4(b), as requested.

b. If You Distribute, or Publicly Performthe Wrk or any
Adapt ati ons or Collections, You nust, unless a request has
been nmade pursuant to Section 4(a), keep intact all copyright
notices for the Wrk and provi de, reasonable to the nedi um or
nmeans You are utilizing: (i) the nanme of the Original Author
(or pseudonym if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or
parties (e.g., a sponsor institute, publishing entity,

195

Copyright

journal) for attribution ("Attribution Parties") in Licensor's
copyright notice, ternms of service or by other reasonable
nmeans, the nane of such party or parties; (ii) the title of
the Work if supplied; (iii) to the extent reasonably
practicable, the URI, if any, that Licensor specifies to be
associated with the Wrk, unless such URI does not refer to

t he copyright notice or licensing information for the Wrk;
and (iv), consistent with Section 3(b), in the case of an
Adaptation, a credit identifying the use of the Work in the
Adaptation (e.g., "French translation of the Work by Ori gi nal
Aut hor," or "Screenplay based on original Wrk by Oiginal
Author"). The credit required by this Section 4 (b) may be

i mpl enented in any reasonabl e manner; provided, however, that
in the case of a Adaptation or Collection, at a m ni num such
credit will appear, if a credit for all contributing authors
of the Adaptation or Collection appears, then as part of these
credits and in a manner at |east as prominent as the credits
for the other contributing authors. For the avoi dance of
doubt, You nmay only use the credit required by this Section
for the purpose of attribution in the manner set out above
and, by exercising Your rights under this License, You may not
implicitly or explicitly assert or inply any connection with,
sponsorshi p or endorsenent by the Oiginal Author, Licensor
and/or Attribution Parties, as appropriate, of You or Your use
of the Work, without the separate, express prior witten

perm ssion of the Oiginal Author, Licensor and/or

Attribution Parties.

Except as otherwise agreed in witing by the Licensor or as
may be ot herwi se permitted by applicable law, if You
Reproduce, Distribute or Publicly Performthe Wrk either by
itself or as part of any Adaptations or Collections, You nust
not distort, nutilate, nodify or take other derogatory action
inrelation to the Wrk which would be prejudicial to the
Original Author's honor or reputation. Licensor agrees that in
those jurisdictions (e.g. Japan), in which any exercise of the
right granted in Section 3(b) of this License (the right to
make Adaptations) would be deenmed to be a distortion,
mutilation, nodification or other derogatory action

prejudicial to the Original Author's honor and reputation, the
Li censor will waive or not assert, as appropriate, this
Section, to the fullest extent pernitted by the applicable
national law, to enable You to reasonably exercise Your right
under Section 3(b) of this License (right to nake Adaptati ons)
but not otherwi se.

5. Representations, Warranties and Di scl ai ner

UNLESS OTHERW SE MUTUALLY AGREED TO BY THE PARTI ES I N WRI TI NG,

LI CENSOR OFFERS THE WORK AS-1S AND MAKES NO REPRESENTATI ONS OR
WARRANTI ES OF ANY KI ND CONCERNI NG THE WORK, EXPRESS, | MPLI ED,
STATUTORY OR OTHERW SE, | NCLUDI NG W THOUT LI M TATI ON, WARRANTI ES OF
TI TLE, MERCHANTI BILITY, FITNESS FOR A PARTI CULAR PURPCSE,

NONI NFRI NGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,

ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRCRS, WHETHER OR NOT

DI SCOVERABLE. SQOVE JURI SDI CTI ONS DO NOT ALLOW THE EXCLUSI ON OF

I MPLI ED WARRANTI ES, SO SUCH EXCLUSI ON MAY NOT APPLY TO YQU.

6.

Limitation on Liability. EXCEPT TO THE EXTENT REQUI RED BY

APPLI CABLE LAW I N NO EVENT WLL LI CENSOR BE LI ABLE TO YOU ON ANY
LEGAL THEORY FOR ANY SPECI AL, | NClI DENTAL, CONSEQUENTI AL, PUNI TI VE
OR EXEMPLARY DAMAGES ARI SING QUT OF THI S LI CENSE OR THE USE OF
THE WORK, EVEN | F LI CENSOR HAS BEEN ADVI SED OF THE PGOSSI Bl LI TY

OF SUCH DANAGES.

196

Copyright

7. Term nation

a.

This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terns of this

Li cense. Individuals or entities who have received Adaptations
or Collections from You under this License, however, wll not
have their licenses term nated provided such individuals or
entities remain in full conpliance with those |icenses.
Sections 1, 2, 5, 6, 7, and 8 will survive any termination of
this License.

Subj ect to the above terns and conditions, the |license granted
here is perpetual (for the duration of the applicable
copyright in the Wirk). Notwi thstandi ng the above, Licensor
reserves the right to release the Wrk under different |icense
ternms or to stop distributing the Work at any tine; provided,
however that any such election will not serve to withdraw this
Li cense (or any other license that has been, or is required to
be, granted under the terms of this License), and this License
will continue in full force and effect unless term nated as
stated above.

8. M scel | aneous

a.

Each tine You Distribute or Publicly Performthe Wrk or a
Col l ection, the Licensor offers to the recipient a license to
the Work on the sanme terns and conditions as the |license
granted to You under this License.

Each tine You Distribute or Publicly Performan Adaptation
Li censor offers to the recipient a license to the origina
Wrk on the sane ternms and conditions as the |icense granted
to You under this License.

If any provision of this License is invalid or unenforceable
under applicable law, it shall not affect the validity or
enforceability of the renminder of the terns of this License
and without further action by the parties to this agreenent,
such provision shall be reformed to the m ni nrum extent
necessary to nake such provision valid and enforceabl e.

No termor provision of this License shall be deened waived
and no breach consented to unl ess such wai ver or consent shal
be in witing and signed by the party to be charged with such
wai ver or consent.

This License constitutes the entire agreenent between the
parties with respect to the Work licensed here. There are no
under st andi ngs, agreenments or representations with respect to
the Work not specified here. Licensor shall not be bound by
any additional provisions that nay appear in any comunication
fromYou. This License may not be nodified without the mnutual
witten agreenent of the Licensor and You.

The rights granted under, and the subject matter referenced,
in this License were drafted utilizing the terni nol ogy of the
Berne Convention for the Protection of Literary and Artistic
Wirks (as anended on Septenber 28, 1979), the Rome Convention
of 1961, the WPO Copyright Treaty of 1996, the W PO

Per f ormances and Phonograns Treaty of 1996 and the Universa
Copyright Convention (as revised on July 24, 1971). These
rights and subject natter take effect in the rel evant
jurisdiction in which the License terns are sought to be

197

Copyright

enforced according to the correspondi ng provisions of the

i mpl enentation of those treaty provisions in the applicable
national law. If the standard suite of rights granted under
appl i cabl e copyright |aw includes additional rights not
granted under this License, such additional rights are deened
to be included in the License; this License is not intended to
restrict the license of any rights under applicable |aw

Creative Conmons is not a party to this License, and nakes no
warranty whatsoever in connection with the Wrk. Creative Commobns
will not be liable to You or any party on any |egal theory for any
danmages what soever, including without |limitation any general,

speci al, incidental or consequential damages arising in connection
to this license. Notw thstanding the foregoing two (2) sentences,
if Creative Commons has expressly identified itself as the Licensor
hereunder, it shall have all rights and obligations of Licensor.

Except for the linmted purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commpns does not authorize
the use by either party of the tradenark "Creative Commobns" or any
related tradenmark or | ogo of Creative Commpns wi thout the prior
witten consent of Creative Commons. Any pernitted use will be in
conpliance with Creative Commobns' then-current trademark usage

gui del i nes, as may be published on its website or otherw se nade
avai | abl e upon request fromtime to tinme. For the avoi dance of
doubt, this trademark restriction does not formpart of this

Li cense.

Creative Conmons nay be contacted at http://creativecomons. org/.

198

	PHPUnit Manual
	Table of Contents
	Chapter 1. Automating Tests
	Chapter 2. PHPUnit's Goals
	Chapter 3. Installing PHPUnit
	PEAR
	Composer
	PHP Archive (PHAR)
	Optional packages
	Upgrading

	Chapter 4. Writing Tests for PHPUnit
	Test Dependencies
	Data Providers
	Testing Exceptions
	Testing PHP Errors
	Testing Output
	Assertions
	assertArrayHasKey()
	assertClassHasAttribute()
	assertClassHasStaticAttribute()
	assertContains()
	assertContainsOnly()
	assertContainsOnlyInstancesOf()
	assertCount()
	assertEmpty()
	assertEqualXMLStructure()
	assertEquals()
	assertFalse()
	assertFileEquals()
	assertFileExists()
	assertGreaterThan()
	assertGreaterThanOrEqual()
	assertInstanceOf()
	assertInternalType()
	assertJsonFileEqualsJsonFile()
	assertJsonStringEqualsJsonFile()
	assertJsonStringEqualsJsonString()
	assertLessThan()
	assertLessThanOrEqual()
	assertNull()
	assertObjectHasAttribute()
	assertRegExp()
	assertStringMatchesFormat()
	assertStringMatchesFormatFile()
	assertSame()
	assertSelectCount()
	assertSelectEquals()
	assertSelectRegExp()
	assertStringEndsWith()
	assertStringEqualsFile()
	assertStringStartsWith()
	assertTag()
	assertThat()
	assertTrue()
	assertXmlFileEqualsXmlFile()
	assertXmlStringEqualsXmlFile()
	assertXmlStringEqualsXmlString()

	Error output
	Edge cases

	Chapter 5. The Command-Line Test Runner
	Command-Line switches

	Chapter 6. Fixtures
	More setUp() than tearDown()
	Variations
	Sharing Fixture
	Global State

	Chapter 7. Organizing Tests
	Composing a Test Suite Using the Filesystem
	Composing a Test Suite Using XML Configuration

	Chapter 8. Database Testing
	Supported Vendors for Database Testing
	Difficulties in Database Testing
	The four stages of a database test
	1. Clean-Up Database
	2. Set up fixture
	3–5. Run Test, Verify outcome and Teardown

	Configuration of a PHPUnit Database TestCase
	Implementing getConnection()
	Implementing getDataSet()
	What about the Database Schema (DDL)?
	Tip: Use your own Abstract Database TestCase

	Understanding DataSets and DataTables
	Available Implementations
	Flat XML DataSet
	XML DataSet
	MySQL XML DataSet
	YAML DataSet
	CSV DataSet
	Array DataSet
	Query (SQL) DataSet
	Database (DB) Dataset
	Replacement DataSet
	DataSet Filter
	Composite DataSet

	Beware of Foreign Keys
	Implementing your own DataSets/DataTables

	The Connection API
	Database Assertions API
	Asserting the Row-Count of a Table
	Asserting the State of a Table
	Asserting the Result of a Query
	Asserting the State of Multiple Tables

	Frequently Asked Questions
	Will PHPUnit (re-)create the database schema for each test?
	Am I required to use PDO in my application for the Database Extension to work?
	What can I do, when I get a “Too much Connections” Error?
	How to handle NULL with Flat XML / CSV Datasets?

	Chapter 9. Incomplete and Skipped Tests
	Incomplete Tests
	Skipping Tests
	Skipping Tests using @requires

	Chapter 10. Test Doubles
	Stubs
	Mock Objects
	Stubbing and Mocking Web Services
	Mocking the Filesystem

	Chapter 11. Testing Practices
	During Development
	During Debugging

	Chapter 12. Test-Driven Development
	BankAccount Example

	Chapter 13. Behaviour-Driven Development
	BowlingGame Example

	Chapter 14. Code Coverage Analysis
	Specifying Covered Methods
	Ignoring Code Blocks
	Including and Excluding Files
	Edge cases

	Chapter 15. Other Uses for Tests
	Agile Documentation
	Cross-Team Tests

	Chapter 16. Skeleton Generator
	Generating a Test Case Class Skeleton
	Generating a Class Skeleton from a Test Case Class

	Chapter 17. PHPUnit and Selenium
	Selenium Server
	Installation
	PHPUnit_Extensions_Selenium2TestCase
	PHPUnit_Extensions_SeleniumTestCase

	Chapter 18. Logging
	Test Results (XML)
	Test Results (TAP)
	Test Results (JSON)
	Code Coverage (XML)
	Code Coverage (TEXT)

	Chapter 19. Extending PHPUnit
	Subclass PHPUnit_Framework_TestCase
	Write custom assertions
	Implement PHPUnit_Framework_TestListener
	Subclass PHPUnit_Extensions_TestDecorator
	Implement PHPUnit_Framework_Test

	Appendix A. Assertions
	Appendix B. Annotations
	@author
	@backupGlobals
	@backupStaticAttributes
	@codeCoverageIgnore*
	@covers
	@coversNothing
	@dataProvider
	@depends
	@expectedException
	@expectedExceptionCode
	@expectedExceptionMessage
	@group
	@outputBuffering
	@preserveGlobalState
	@requires
	@runTestsInSeparateProcesses
	@runInSeparateProcess
	@test
	@testdox
	@ticket

	Appendix C. The XML Configuration File
	PHPUnit
	Test Suites
	Groups
	Including and Excluding Files for Code Coverage
	Logging
	Test Listeners
	Setting PHP INI settings, Constants and Global Variables
	Configuring Browsers for Selenium RC

	Appendix D. Index
	Index

	Appendix E. Bibliography
	Appendix F. Copyright

